You are here

The problem of antibiotic resistance of microorganisms in Ukraine and the world

Basically, antibiotic resistance develops due to the incorrect use of antibiotics in various branches of animal husbandry, both during the treatment or prevention of diseases, and due to their long-term use as growth stimulants. As a result, costs for the treatment of farm animals and companion animals are increasing. Antibiotic resistance among microorganisms is a threat to every person, every patient, medical and veterinary worker. Also, this is a big challenge for the field of health care, veterinary medicine and agriculture as a whole. It is very difficult to solve the problem of resistance, because it is not one-sided. Medicines that were effective a few years ago are losing their positions today, and their use is being forced to be limited. According to data from the World Health Organization, the rapid increase in the resistance of microorganisms to antibacterial drugs threatens the scientific gains made by scientists during the last 50-70 years. The formation of antibiotic resistance is due to the genetic properties of microorganisms, as a result of their acquisition of new genetic information, or due to a change in the level of expression of the bacterial cell's own genes. An important factor in the fight against the spread of antibiotic resistance is the pharmacodynamic substantiation of the dosing regimens of antibacterial drugs and their use for specific microorganisms.There are guiding documents that control and recommend the reliability of determining the sensitivity of microorganisms to antibiotics, in particular - methodological recommendations of the European organization EUCAST, the data and material of which are periodically (annually) updated. These documents are developed primarily for routine use in clinical laboratories that do not cover technical procedures for identifying resistance mechanisms at the molecular level. However, a significant part of the given data, research on determining the sensitivity of microorganisms to antibiotics, is performed in national reference laboratories. There is a change in the sensitivity of the micro-flora to antibiotics, which is not covered by the screening of multi-resistant microorganisms, or the direct detection of resistance in clinical samples. Therefore, the study of the problem remains relevant and expedient.

Key words: microorganisms, resistance, antibiotics, gram-positive bacteria, gram-negative bacteria, control, disease, spread, problem, treatment, animals.

1. Penkov. A. (2020). Chym zahrozhuie bezkontrolnyi pryiom likiv. Zdorovia. 11 (online). (Data zvernennia 30 lystopada) [What are the dangers of uncontrolled medication. Health. 11 (online). (Date of application November 30)]. Available at:lb.ua/society/2020/11/30/471854_ likar_andriy_penkov_pro_antibiotiki.html.

2. Svizhak, V.K., Deineka, S.Ie. (2014). Antybiotykorezystentnist: bahatohrannist problemy [Antibiotic resistance: multifaceted problem]. Bukovynskyi derzhavnyi medychnyi universytet (online) [Bukovyna State Medical University], no. 2, pp. 222–224. Available at: www.researchgate.net/profile/Veronika-Svizhak/ publication/31507 5342.

3. Ferri, M., Ranucci, E., Romagnoli, P., Giaccone, V. (2017). Antimicrobial resistance: A global emerging threat to public health systems. Crit. Rev. Food Sci. Nutr. (online), 57, pp. 2857–2876. DOI:10.1080/10408 398.2015.1077192.

4. Ruzante1, J.M., Harris, B., Plummer, P. (2022). Surveillance of antimicrobial resistance in veterinary medicine in the United States: Current efforts, challenges, and opportunities. Sec. Veterinary Infectious Diseases. DOI:10.3389/fvets.2022

5. Romaniuk, L.B., Kravets, N.Ia., Klymniuk, S.I., Kopcha, V.S., Dronova, O.I. (2019). Antybiotykorezystentnist umovno-patohennykh mikroorhanizmiv: aktualnist, umovy vynyknennia, shliakhy podolannia [Antibiotic resistance of opportunistic pathogens: Relevance, conditions of occurrence, ways to overcome]. Infektsiini khvoroby. (online) [Infectious diseases]. 3, pp. 63–71. DOI:10.11603/1681-2727.2019.4.10965.

6. Andrieieva, I.A., Chemerys, O.L. (2016). Rol mikrobiolohichnoi laboratorii v systemi hlobalnoi bezpeky okhorony zdorovia [The role of the microbiological laboratory in the system of global health security]. Antybakterialna terapiia u KhKhI storichchi: problemy ta dosiahnennia: materialy naukovo-praktychnoi konferentsii za uchastiu mizhnarodnykh spetsialistiv v ramkakh realizatsii hlobalnoi kampanii VOOZ «Antybiotyky: vykorystovuite oberezhno!» ta Druhoho Vsesvitnoho tyzhnia pravylnoho zastosuvannia antybiotykiv [Antibacterial therapy in the 21st century: problems and achievements: materials of a scientific and practical conference with the participation of international specialists within the framework of the WHO global campaign "An tibiotics: use carefully!" and the Second World Antibiotic Week]. pp. 4–7. Available at:repo.knmu.edu.ua/bitstream/123456789/14899/1/C%D0%B1%D0%BE%D1%80%D0%BD% D0%B8%D0%BA_%D0%90%D0%BD%D1%82%D0%.pdf.

7. Borovyk, I.V. (2016). Analiz antybiotykorezystentnosti zbudnykiv bakterialnykh zakhvoriuvan tvaryn u Dnipropetrovskii oblasti [Analysis of antibiotic resistance of pathogens of bacterial diseases of animals in the Dnipropetrovsk region]. Naukovo-tekhnichnyi biuleten NDTs biobezpeky ta ekolohichnoho kontroliu resursiv APK (online) [Scientific and technical bulletin of the NDC of biosafety and ecological control of agricultural resources]. no. 3, pp. 49–53. Available at:www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64. exe?I21DBN=LINK&P21 DBN=UJRN&Z21ID=&S- 21REF=10&S21CNR=20&S21ST0.

8. Salmanov, A. (2019). Borotba z antymikrobnoiu rezystentnistiu: plan dii Ukrainy [Combating antimicrobial resistance: action plan of Ukraine]. Infektsiinyi kontrol (online) [Infection control]. no. 11. Available at:e.med-info.net.ua/praktika-upravlinnya-medichnim-zakladom-2019-11/borotba-z-antimikrobnoyu-rezistentnistyu-plan-diy.

9. Giske, C.G., Martinez, L.M., Cantón, R. (2017). EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance (online). Version 2.01. July. 43 p. Available at:https://www.eucast.org/fileadmin/src/media/PDFs/ EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_170711.pdf.

10. Dear, J.D. (2020). Bacterial Pneumonia in Dogs and Cats. Vet. Clin. North. Am. Small Anim. Pract (online). no. 50, 2, pp. 447–465. DOI:10.1016/j. cvsm.2019.10.007.

11. Weiser, J.N., Ferreira, D.M., Paton, J.C. (2018). Streptococcus pneumoniae: transmission, colonization and invasion. Nat. Rev. Microbiol (online). no. 16, 6, pp. 355–367. DOI:10.1038/s 41579-018-0001-8.

12. Giske, C.G., Martinez, L.M., Cantón, R. (2017). EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance (online). Version 2.01. 43 p. Available at:www.eucast.org/resistance_mechanisms.

13. VetCAST. (2018). Guideline VetCAST PK analysis. Guideline to collect, archive, handle and analyse pharmacokinetic data for VetCAST (online). Available at:www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/VetCAST/VetDocument... to_collect_handle_and_analyse_PK_data_DRAFT7.pdf

14. Lees, P., Illambas, J., Pelligand, L., Toutain, P.L. (2016) Comparison of standardised versus nonstandardised methods for testing the in vitro potency of oxytetracycline against Mannheimia haemolytica and Pasteurella multocida. Vet J. Dec. (online), 218, pp. 60–64. DOI:10. 1016/j.tvjl.2016.11.006. Epub 2016 Nov 17.

15. Lees, P., Potter, T., Pelligand, L., Toutain, P.L. (2018). Pharmacokinetic-pharmacodynamic integration and modelling of oxytetracycline for the calf pathogens Mannheimia haemolytica and Pasteurella multocida. J. Vet. Pharmacol. Ther.(online), no. 41, 1, pp. 28–38. DOI:10.1111/jvp.12439.

16. Toutain, P.L., Bousquet-Mélou, A., Damborg, P., Ferran, A.A., Mevius, D., Pelligand, L., Veldman, K.T., Lees, P. (2017). En Route towards European Clinical Breakpoints for Veterinary Antimicrobial Susceptibility Testing: A Position Paper Explaining the VetCAST. Approach. Front Microbiol.(online), no. 15, 8, 2344 p. DOI:10.3389/fmicb.2017.02344.

17. Dorey, L., Pelligand, L., Cheng, Z., Lees, P. (2017). Pharmacokinetic/pharmacodynamic integration and modelling of oxytetracycline for the porcine pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida. J. Vet. Pharmacol. Ther. (online), no. 40, 5, pp. 505–516. DOI:10.1111/jvp.12385.

18. Jun, K., Myoung-Hwan, Y., Hyoung-Joon, Ko., Sang-Guen, Kim., Chul, Park., Se-Chang, Park (2022). Antimicrobial Resistance and Virulence Factors of Proteus mirabilis Isolated from Dog with Chronic Otitis Externa. Pathogens (online), 11, pp. 1111–1215. DOI:10.3390/pathogens 11101215

19. AL-Jassem, A.M.A., Anwar,A.A., AL-Jabar, M.A. (2022). Molecular Identification using PCR-Technique of Proteus mirabilis Associated with Urinary Tract Infection. Republic of Iraq. Ministry of Higher Education & Scientific Research University of Babylon College of Science Biology Department (online), 33 p. Available at:ep.rdd.edu.iq/sci-day/prizes/graduate_ project/graduate_project_ftxt/ 5dbea2a0e29c05.66382238.pdf .

20. Somayaji, R., Priyantha, M.A., Rubin, J.E., Church, D. (2016). Human infections due to Staphylococcus pseudintermedius, an emerging zoonosis of canine origin: report of 24 cases. Diagn Microbiol Infect Dis.(online). no. 85, 4, pp. 471–6. DOI:10.1016/j.diagmicrobio.2016.05.008.

21. Pomba, C., Rantala, M., Greko, C., Baptiste, K.E., Catry, B., van Duijkeren, E (2017). Public health risk of antimicrobial resistance transfer from companion animals. J Antimicrob Chemother (online), no. 72, pp. 957–68. DOI:10.1093/jac/dkw481.

22. Tompson, A.C., Mateus, A.L.P., Brodbelt, D.C., Chandler, C.I.R. (2015). EMA. Reflection Paper on the Risk of Antimicrobial Resistance Transfer From Companion Animals. London: European Medicines Agency Understanding Antibiotic Use in Companion Animals: A Literature Review Identifying Avenues for Future Efforts. Sec. Veterinary Humanities and Social Sciences (online). DOI:10.3389/fvets.2021.719547.

23. Arndt, E.R., Farzan, A., MacInnes, J.I., Friendship, R.M. (2019). Antimicrobial resistance of Streptococcus suis isolates recovered from clinically ill nursery pigs and from healthy pigs at different stages of production. J. Can Vet. (online), no. 60, 5, pp. 519–522. Available at: www.ncbi.nlm.nih.gov/pmc/articles/ PMC6463947/

24. Cordova, M.G. (2022). Limiting antibiotics for cows may create a new dairy market. Melanie Greaver Cordova. College of Veterinary Medicine (online). Available at: news.cornell.edu/stories/2022/11/limiting-antibiotics-cows-may-create-new-dairy-market

25. Schell, R.C. (2022). Responsible antibiotic use labeling and consumers willingness to buy and pay for fluid milk. J. daire saince (online). DOI:10.3168/ jds.2022-21791

26. Zheng, J., Huang, S., Huang, S. (2020). Colistin for pneumonia involving multidrug-resistant Acinetobacter calcoaceticus-Acinetobacter baumannii complex. J. Microbiol. Immunol. Infect. (online), no. 53, 6, pp. 854–865. DOI:10.1016/j.jmii.2019.08.007.

27. Lynch, J.P. Clark, N.M., Zhanel, G.G. (2022). Infections Due to Acinetobacter baumannii-calcoaceticus Complex: Escalation of Antimicrobial Resistance and Evolving Treatment Options. (online). no. 43, 1, pp. 97–124. DOI:10.1055/s-0041-1741019.

28. Koike, S., Mackie, R., Aminov, R. (2017). Agricultural Use of Antibiotics and Antibiotic Resistance. School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom. (online), pp. 3–33. Available at:www.researchgate.net/publication/315613886_ Agricultural_use_of_antibiotics_and_ antibiotic_resistance

29. Wollmuth, E.M.A (2017). Survey of β-lactam Antibiotic Resistance Genes and Culturable Ampicillin Resistant Bacteria in Minnesota Soils. Hamline University (online), pp. 6–28. Available at:digitalcommons. hamline.edu/cgi/viewcontent. cgi?article=1068&context=dhp

30. Gurung, M., Tamang, M.D., Moon, D.C. (2015). Molecular Basis of Resistance to Selected Antimicrobial Agents in the Emerging Zoonotic Pathogen Streptococcus suis. Journal of Clinical Microbiology (online), Vol. 53, no. 7, pp. 332–336. DOI:10.1128/JCM.00123-15.

31. Schwendener, S., Cotting, K., Perreten, V. (2017). Novel methicillin resistance gene mecD in clinical Macrococcus caseolyticus strains from bovine and canine sources. Sci Rep. (online). DOI:10.1038/srep43797

32. WHO (2020). World leaders join forces to fight the accelerating crisis of antimicrobial resistance (online). pp. 1–8. Available at:www.who.int/news/item/20- 11-2020-world-leaders-join-forces .

33. WHO (2020). Antibiotic resistance threats in the United States (online). pp. 3–5. Available at:www.thermofisher.com/procalcitonin/wo/en/home.html?cid=0se_ gaw_25052021_ DA7MGR

34. Thompson, N.D., La Place, L., Epstein, L. (2016). Prevalence of Antimicrobial Use and Opportunities to Improve Prescribing Practices in U.S. Nursing Homes. Journal of the American Medical Directors Association (online), no. 17, 12, рр. 1151–1153. Available at:www.ncbi.nlm.nih.gov/pmc/articles/ PMC6556772/

35. Schell, R.Ch., Bulut, E., Padda, H., Safi, A.G., Moroni, P., Ivanek, R. (2022). Responsible antibiotic use labeling and consumers’ willingness to buy and pay for fluid milk. J. Dairy Sci., no. 106, рр. 132–150. (online). DOI:10.3168/jds.2022-21791

AttachmentSize
PDF icon chemerovska_2_2022.pdf487.4 KB