You are here

Antibiotic resistance of isolates of Staphylococcus spp. and Streptococcus spp. causing mastitis on dairy farms in Ukraine

Mastitis is the most common pathology of cows that causes large economic losses to dairy farms. Mastitis is often caused by a group of infectious associated pathogens that can be transmitted among animals. Most often, the pathological process in subclinically and clinically sick animals is caused by coccal gram-positive microflora. A major problem is the mechanisms by which microorganisms acquire resistance to one or more antibacterial agents. Thus, standard treatment regimens used on the farm become ineffective. The publication presents the results of the study of antibiotic resistance of 45 isolates of Staphylococcus spp. and 22 isolates of Streptococcus spp. In this study, the chromogenic media CHROMagarTM Mastitis, CHROMagarTM Orientation and CHROMagarTM MH Orientation were used, which helped to speed up the isolation and identification of cultures. Phenotypic antibiotic resistance profiles were determined using the agar diffusion method. Staphylococcus aureus and coagulase-negative Staphylococcus (CoNS) showed a high level of resistance to beta-lactams of the penicillin class of benzylpenicillin – 60% and 66.7%. Streptococcus disgalactiae and Streptococcus agalactiae showed high resistance to tetracycline – 46.7% and 35.3%. At the same time, Streptococcus agalactiae had a high resistance to clindamycin of 35.3%. Streptococcus disgalactiae to benzylpenicillin – 29.4%, Streptococus uberis to clindamycin – 75%. The lowest resistance was observed to the antibiotic vancomycin in 6.7% of isolated staphylococci and 13.3% of streptococci. MAR index of more than 0.2 was observed in 75% of Streptococus uberis, 60% of CoNS and 52.9% of Streptococcus agalactiae. More than 50% of all studied isolates had multiple resistance to antibiotics most commonly used on Ukrainian farms.

Key words: Streptococcus spp., Staphylococcus spp., antibiotic resistance, mastitis, infectious mastitis, gram-positive bacteria.

  1. Majumder, S., Jung, D., Ronholm, J., George, S. (2021). Prevalence and mechanisms of antibiotic resistance in Escherichia coli isolated from mastitic dairy cattle in Canada. BMC Microbiol., Vol. 21, no. 1, 222 p. DOI:10.1186/s12866-021-02280-5.
  2. Kim, S.-J., Moon, D.C., Park, S.-C., Kang, H.Y., Na, S.H., Lim, S.-K. (2019). Antimicrobial resistance and genetic characterization of coagulase-negative staphylococci from bovine mastitis milk samples in Korea. J. Dairy Sci., Vol. 102, no. 12, pp. 11439–11448. DOI:10.3168/jds.2019-17028.
  3. Persson, Y., J. Nyman, A.-K., Grönlund-Andersson, U. (2011). Etiology and antimicrobial susceptibility of udder pathogens from cases of subclinical mastitis in dairy cows in Sweden. Acta Vet. Scand., Vol. 53, no. 1, 36 p. DOI:10.1186/1751-0147-53-36.
  4. Saini, V., McClure, J.T., Scholl, D.T., DeVries, T.J., Barkema, H.W. (2012). Herd-level association between antimicrobial use and antimicrobial resistance in bovine mastitis Staphylococcus aureus isolates on Canadian dairy farms. J. Dairy Sci., Vol. 95, no. 4, pp. 1921–1929. DOI:10.3168/jds.2011-5065.
  5. Dobrut, A. (2023). The Two-Track Investigation of Fibronectin Binding Protein A of Staphylococcus aureus from Bovine Mastitis as a Potential Candidate for Immunodiagnosis: A Pilot Study. Int. J. Mol. Sci., Vol. 24, no. 7, 6569 p. DOI: 10.3390/ijms24076569.
  6. De Jong, E. (2023). Invited review: Selective treatment of clinical mastitis in dairy cattle. J. Dairy Sci. DOI:10.3168/jds.2022-22826.
  7. Krömker, V., Leimbach, S. (2017). Mastitis treatment-Reduction in antibiotic usage in dairy cows, Reprod. Domest. Anim., Vol. 52, pp. 21–29. DOI:10. 1111/rda.13032.
  8. McDougall, S., Hussein, H., Petrovski, K. (2014). Antimicrobial resistance in Staphylococcus aureus, Streptococcus uberis and Streptococcus dysgalactiae from dairy cows with mastitis, N. Z. Vet. J., Vol. 62, no. 2, pp. 68–76. DOI:10.1080/ 00480169.2013.843135.
  9. Oliver, S.P., Murinda, S.E. (2012). Antimicrobial Resistance of Mastitis Pathogens, Vet. Clin. North Am. Food Anim. Pract., Vol. 28, no. 2, pp. 165–185. DOI:10.1016/j.cvfa.2012.03.005.
  10. Bengtsson, B., Unnerstad, H.E., Ekman, T., Artursson, K., Nilsson-Öst, M., Waller, K.P. (2009). Antimicrobial susceptibility of udder pathogens from cases of acute clinical mastitis in dairy cows. Vet. Microbiol., Vol. 136, no. 1–2, pp. 142–149. DOI:10.1016/j. vetmic.2008.10.024.
  11. Chemerovska, I.O., Rublenko, I.O. (2022). Problema antybiotykorezystentnosti mikroorhanizmiv v Ukraini ta sviti [The problem of antibiotic resistance of microorganisms in Ukraine and the world]. Naukovyi Visnyk Veterynarnoi Medytsyny [Scientific Bulletin of Veterinary Medicine]. no. 2, pp. 33–41. DOI:10. 33245/2310-4902-2022-176-2-33-41
  12. Sandhu, R., Dahiya, S., Sayal, P. (2016). Evaluation of multiple antibiotic resistance (MAR) index and Doxycycline susceptibility of Acinetobacter species among inpatients, Indian. J. Microbiol. Res., Vol. 3, no. 3, 299 p. DOI:10.5958/ 2394-5478.2016.00064.9.
  13. EUCAST Disk Diffusion Test Methodology. Available at: https://www. eucast.org/ast_of_bacteria/ disk_diffusion_methodology>[15.05.2023]
  14. CHROMagar™ Orientation Instructions for Use. Available at: https://www. chromagar.com/product/chromagar-orientation/> [15.05.2023]
  15. CHROMagar™ MH Orientation Instructions for Use. Accessible at: https:// www.chromagar.com/ en/product/chromagar-mh-orientation/> [15.05.2023]
  16. Granja, B.M., Fidelis, C.E., Garcia, B.L.N., dos Santos, M.V. (2021). Evaluation of chromogenic culture media for rapid identification of microorganisms isolated from cows with clinical and subclinical mastitis. J. Dairy Sci., Vol. 104, no. 8, pp. 9115–9129. DOI:10.3168/jds.2020-19513.
  17. Cobirka, M., Tancin, V., Slama, P. (2020). Epidemiology and Classification of Mastitis. Animals, Vol. 10, no. 12, 2212 p. DOI:10.3390/ani 10122212.
  18. Harkavenko, T.O., Kozytska, T.H. (2016). Mekhanizm rezystentnosti ta metody vyiavlennia metytsylinrezestentnoho stafilokoka (MRSA) (Ohliadova stattia) [Mechanism of resistance and methods of detection of methicillin-resistant staphylococcus (MRSA) (review article)]. Veterynarna Biotekhnolohiia [Veterinary Biotechnology], Vol. 28, pp. 42–54.
  19. Girmay, W. (2020). Isolation and Identification of Methicillin-Resistant Staphylococcus aureus (MRSA) from Milk in Shire Dairy Farms, Tigray, Ethiopia. Vet. Med. Int., Vol. 2020, pp. 1–7. DOI:10.1155/2020/8833973.
  20. Bondar, M.V., Pylypenko, M.M., Svintukovskyi, M.Yu., Kharchenko, L.A., Prevysla, O.M., Tsvyk, I.M. (2022). Antybiotykorezystentnist' mikro organizmiv: mehanizmy rozvytku j shljahy zapobigannja [Antibiotic Resistance: Mechanisms of Development and Ways to Prevent]. Medycyna nevidkladnyh staniv [Emergency medicine]. no. (3.74), pp. 11–17. DOI:1022141/ 2224-0586.3.74.2016.76136.
  21. Hoque, M.N., Das, Z.C., Rahman, A.N.M.A., Haider, M.G., Islam, M.A. (2018). Molecular characterization of Staphylococcus aureus strains in bovine mastitis milk in Bangladesh, Int. J. Vet. Sci. Med., Vol. 6, no. 1, pp. 53–60. DOI:10. 1016/j. ijvsm.2018.03.008.
  22. Shrestha, A., Bhattarai, R.K., Luitel, H., Karki, S., Basnet, H.B. (2021). Prevalence of methicillin-resistant Staphylococcus aureus and pattern of antimicrobial resistance in mastitis milk of cattle in Chitwan, Nepal. BMC Vet. Res., Vol. 17, no. 1, 239 p. DOI:10.1186/ s12917-021-02942-6.
  23. Zhang, S. (2018). Phenotypic and genotypic characterization of antimicrobial resistance profiles in Streptococcus dysgalactiae isolated from bovine clinical mastitis in 5 provinces of China. J. Dairy Sci., Vol. 101, no. 4, pp. 3344–3355. DOI:10.3168/jds.2017- 14031.
  24. Pascu, C., Herman, V., Iancu, I., Costinar, L. (2022). Etiology of Mastitis and Antimicrobial Resistance in Dairy Cattle Farms in the Western Part of Romania. Antibiotics, Vol. 11, no. 1, 57 p. DOI:10.3390/ antibiotics11010057.
  25. Holko, I., Tančin, V., Vršková, M., Tvarožková, K. (2019). Prevalence and antimicrobial susceptibility of udder pathogens isolated from dairy cows in Slovakia. J. Dairy Res., Vol. 86, no. 4, pp. 436– 439. DOI:10.1017/S00220 29919000694.
  26. Boireau, C. (2018). Antimicrobial resistance in bacteria isolated from mastitis in dairy cattle in France 2006–2016. J. Dairy Sci., Vol. 101, no. 10, pp. 9451– 9462. DOI:10.3168/jds.2018-14835.
  27. Kuhnen, S. (2021). Identification and antimicrobial susceptibility of milk pathogen isolated from dairy production systems. Prev. Vet. Med., Vol. 194. DOI: 10.1016/j.prevetmed.2021.105451.
AttachmentSize
PDF icon shevchenko_andriichuk_1_2023.pdf1.28 MB