You are here

Clinical-radiological, hematological and biochemical assessment of bone replacement with germanium-doped calcium-phosphate ceramics for fragment fractures of tubular bones in dogs

Abstract. Among surgical pathology in animals, asignificant share is occupied by various traumatic injuries of the skeleton, the consequence of which are bonefractures. The results of X-ray and biochemical indicators of blood for bone fragment fractures in dogs arepresented.The purpose of the work is to clinically, radiologically, and pathochemically justify bone replacementwith germanium-doped calcium-phosphate ceramicsfor bone fragment fractures in dogs.In the injured animals of the experimental group(n=10), bone defects were replaced with germanium-doped calcium-phosphate ceramics (ГТлГег-700),in the control group (n=10) with unalloyed ceramics(ГТг-700). The activity of total alkaline phosphatase (ALP)and its bone isoenzyme (KiLP), tartrate-resistant acidphosphatase (TrKF) was determined in blood serum.Measurements were made with a Stat Fax 4500 spectrophotometer.On the 60th day, in the animals of the experimentalgroup, the filling of the bone defect with regeneratedmaterial of high X-ray density was noted, with the absence of periosteal reaction, which indicated the complete consolidation of the fracture and was the reasonfor the removal of the means of fixation. In the control,the area of the bone tissue defect that was not filledwith regenerate was visualized.The activity of tartrate-resistant acid phosphatase(TRP) in both groups tended to increase. On the 14th day,the animals of the experimental group had a peak activity of TrKf (33.8±0.31), which was 1.3 times (p<0.001)higher than the level in the control group and 1.5 times(p<0.001) of clinically healthy animals, respectively. Onthe 30th day of research, a 1.2-fold (p<0.001) decreasein the level of TrCF was noted in the experimental groupcompared to the control group, in which the indicatorreached peak values at 34.9±0.25 units/l.The maximum activity of the bone isoenzyme alkaline phosphatase (KiLF) in the experimental groupwas observed on the 14th day of reparative osteogenesis and was 41.7±0.43 units/l, which is 1.2 times(p<0.001) higher than the indicator of the controlgroup. On the other hand, in the last group, the peakactivity of the bone isozyme was noted only on the30th day (40.9±0.48 units/l), while the indicator of theexperimental animals decreased dynamically duringthis period.The use of calcium-phosphate ceramics for fragment fractures of the bones of the tibia in dogs helpsto reduce the intensity of the inflammatory-resorptivestage of reparative osteogenesis and accelerates consolidation by 1.4 times. The dynamics of biochemicalmarkers of bone metabolism testifies to the optimizedcourse of reparative osteogenesis during osteoreplacement of bone defects with germanium-doped calcium-phosphate ceramics.

Key words: bioceramics, germanium, total alkaline phosphatase, bone isoenzyme of alkaline phosphatase, tartrate-resistant acid phosphatase, bonetissue.

  1. Appendicular fracture repair in dogs using thelocking compression plate system: 47 cases / P.J. Haaland et al. Vet. Comp. Orthop Traumatol. 2009, Vol. 4,pp. 309–315. DOI:10.3415/VCOT08-05-0044.
  2. Rublenko, M.V., Andriiets, V.H., Semeniak, S.A.,Ulianchych, N.V. (2015). Vykorystannia kompozytnykh materialiv za perelomiv trubchastykh kistoku tvaryn [The use of composite materials for fractures of tubular bones in animals]. Bila Tserkva, 86 p.(in Ukrainian).
  3. Pustovit, R.V., Danyleiko, Yu.M., Rublenko, M.V.(2006). Monitorynh khirurhichnoi patolohii sered dribnykh domashnikh tvaryn DLVM u Kyivskomu raionim. Odesy za 2003–2005 roky [Monitoring of surgicalpathology among small domestic animals DLVM inKyiv district of Odessa for 2003-2005]. Visnyk Bilotserkiv. derzh. ahrar. un-tu. [Bulletin of the Bilotserki State Agrarian University]. Bila Tserkva, Issue 36,pp. 132–137. (in Ukrainian).
  4. Capak, H., Brkljaca Bottegaro, N., Manojlovic, A., Smolec, O., Vnuk, D. (2016). Review of166 Gunshot Injury Cases in Dogs. Top CompanionAnim Med. Vol. 31(4), pp. 146–151. DOI:10.1053/j.tcam.2016.11.001.
  5. Appendicular fracture repair in dogs using thelocking compression plate system: 47 cases / P.J. Haaland et al. Vet. Comp. Orthop Traumatol. 2009, Vol. 4,pp. 309–315. DOI:10.3415/VCOT08-05-0044.
  6. Intarapanich, N., McCobb, E., Reisman, R.,Rozanski, E., Intarapanich, P. (2016). Characterizationand Comparison of Injuries Caused by Accidental andNon-accidental Blunt Force Trauma in Dogs and Cats.Journal of Forensic Sciences, 61 p. DOI:10.1111/1556-4029.13074.
  7. Cojocaru, R., Schuszler, L., Bumb, D.B., Igna, R.,Cornel, A. (2021). Trauma Etiology in Dogs and Cats:A Retrospective Study of 4626 Cases. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Veterinary Medicine. 78, 20 p.DOI:10.15835/buasvmcn-vm:2021.0015.
  8. Rublenko, S.V., Yeroshenko, O.V. (2012).Monitorynh veterynarnoi dopomohy i struktura khirurhichnoi patolohii sered dribnykh domashnikh tvaryn vumovakh miskoi kliniky [Monitoring of veterinary careand the structure of surgical pathology among smallpets in the city clinic]. Visnyk Sumskoho NAU [Bulletin of the Sumy NAU]. Sumy, Issue 1 (30), pp. 150–154(in Ukrainian).
  9. Metsemakers, W.J., Kuehl, R., Moriarty, T.F.,Richards, R.G., Verhofstad, M.H.J., Borens, O., Kates, S.,Morgenstern, M. (2018). Infection after fracture fixation: Current surgical and microbiological concepts.Injury. 49(3), pp. 511–522. DOI:10.1016/j.injury.2016.09.019.
  10. Wenkel, R., Kaulfuss, K. (2000). Fractures insmall and pet animals, frequencies, classification andtherapy. Kleintierpraxis, 35 p.
  11. Marsell, R., Einhorn, T.A. (2011). The biology of fracture healing. Injury. Vol. 42(6), pp. 551–555.DOI:10.1016/j.injury.2011.03.031.
  12. Rublenko, M.V., Andriiets, V.H., Semeniak, S.A.(2017). Molekuliarno-biolohichni mekhanizmy reparatyvnoho osteohenezu [Molecular and biologicalmechanisms of reparative osteogenesis]. Naukovyivisnyk veterynarnoi medytsyny [Scientific Bulletinof Veterinary Medicine]. Vol. 2, no. 136, pp. 13–21.(in Ukrainian).
  13. Won, S., Chung, W.J., Yoon, J. (2017). Clinicalapplication of quantitative computed tomography inosteogenesis imperfecta-suspected cat. J Vet Sci., Vol.18(3), pp. 415–417. DOI:10.4142/jvs.2017.18.3.415.
  14. Sartoris, D.J., Resnick, D. (1989). Dual-energy radiographic absorptiometry for bone densitometry:current status and perspective. AJR Am J Roentgenol.,Vol. 152, pp. 241–246.
  15. Dmitrijev, V. (2018). Features of Dogs Treatment at Fractures of Peripheral Skeleton. ScientificMessenger of LNU of Veterinary Medicine and Biotechnologies. Veterinary Sciences. Vol. 20, pp. 279–281. DOI:10.15421/nvlvet8355
  16. Ilnitskyi, M.H., Smurna, O.V. (2007). Osoblyvosti osteohenezu ta reparatyvnoi reheneratsii kistoktaza u sobak [Peculiarities of osteogenesis and reparative regeneration of pelvic bones in dogs]. Vet. medytsyna Ukrainy [Vet. medicine of Ukraine]. no. 7,pp. 35–37. (in Ukrainian).
  17. Oryan, A., Alidadi, S., Moshiri, A., Maffulli, N.(2014). Bone regenerative medicine: classic options,novel strategies, and future directions. J. Orthop SurgRes., Vol. 9, (1), pp. 29–36.
  18. Stoika R.S., Filchenkov O.O. (2001). Bifunktsionalna diia transformuiuchoho faktora rostu b v rehuliatsii proliferatsii ta apoptozu klityn nervovoi systemy[Bifunctional action of transforming growth factor b inthe regulation of proliferation and apoptosis of cells ofthe nervous system]. Neirofiziolohiia [Neurophysiology]. no. 5, pp. 376–383. (in Ukrainian).
  19. Stoika, R.S., Filchenkov, O.O. (2001). Bifunktsionalna diia transformuiuchoho faktoru rostu b vrehuliatsii proliferatsii ta apoptozu klityn imunnoi systemy [Bifunctional action of transforming growth factor b in the regulation of proliferation and apoptosis ofcells of the immune system]. Imunolohiia ta alerholohiia [Immunology and allergology]. no. 3, pp. 5–16.(in Ukrainian).
  20. Chen, Y.L., Wu, H.W., Jiang, M.J. (2000).Transforming growth factor-beta 1 gene and proteinexpression associated with atherogenesis of cholesterol-fed rabbits. Histol. Histopathol. Vol. 15, pp. 421–428.
  21. Collo, G., Pepper, M.S. (1999). Endothelialcell integrin alpha 5 beta 1 expression is modulated bycytokines and during migration in vitro. J. Cell. Sci.,Vol. 112, pp. 569–578.
  22. Conley, B.A., Smith, J.D., Guerrero-Esteo, M.(2000). Endoglin, a TGF-beta receptor-associated protein, is expressed by smooth muscle cells in humanatherosclerotic plaques. Atherosclerosis. Vol. 153,pp. 323–335.
  23. Frostegard, J., Ulfgren, A.K., Nyberg, P.(1999). Cytokine expression in advanced human atherosclerotic plaques: dominance of proinflammatory(Th1) and macrophage-stimulating cytokines. Atherosclerosis. Vol. 145, pp. 33–43.
  24. Gamble, J.R., Vadas, M.A. (1991). Endothelialcell adhesiveness for human T-lymphocytes is inhibitedby transforming growth factor-beta 1. J. Immunology,Vol. 146, pp. 1149–1154.
  25. Ulianchych, N.V. (2020). Formuvannia vlastyvostei kaltsii-fosfatnoi keramiky dlia reheneratyvnoimedytsyny: avtoref. dys. … kand. tekhn. nauk: 05.02.01.[Formation of the properties of calcium-phosphate ceramics for regenerative medicine: autoref. thesis ...candidate technical Sciences: 05.02.01.]. Kyiv, 27 p.(in Ukrainian).
  26. Todosiuk, T.P. (2020). Rentheno- ta makromorfolohichna otsinka reparatyvnoho osteohenezu za implantatsii hidroksyapatytnoho kompozytu, lehovanoho hermaniiem [X-ray and macromorphological evaluation ofreparative osteogenesis after implantation of hydroxyapatite composite doped with germanium]. Naukovyi visnykveterynarnoi medytsyny [Scientific Bulletin of VeterinaryMedicine], no. 2, pp. 183–194. DOI: 10.33245/2310-4902-2020-160-2-183-194 (in Ukrainian).
  27. Rublenko, M.V., Chemerovskiy, V.A., Andriiets, V.G., Ulyanchich, N.V., Kolomiets, V.V., Koryak, A.S. (2020). Evaluation of usage of silicon-dopedhydroxyapatite ceramics for treatment of fragmentedbone fractures in dogs. Scientific Messenger of LvivNational University of Veterinary Medicine and Biotechnologies. Veterinary sciences. Vol. 22, no. 99,pp. 29–37. DOI:10.327 18/nvlvet9905
  28. Effect of organic germanium compound(Ge-132) on experimental osteoporosis in rats/ Fujii al. General Pharmacology: The Vascular System. 1993, Vol. 24(6), pp. 1527–1532. DOI:10.1007/s10653-017-0061-0
  29. Matthias, H.F. Klinger, W.J. (2002). Roleof Blood Platelets in Infection and Inflammation.Journal of interferon & cytokine research. Vol. 22,pp. 913–922. DOI:10.1089-10799900260286623
  30. Rublenko, M.V., Semeniak, S.A., Ulianchych, N.V.(2014). Dynamika biomarkeriv reparatyvnoho osteohenezu za umov zamishchennia kistkovykh defektiv[Dynamics of biomarkers of reparative osteogenesisunder the conditions of replacement of bone defects].Naukovyi visnyk LNUVVBT im. S.Z. Hzhytskoho [Scientific Bulletin of LNUVVBT named afterS.Z. Gzytsky]. Lviv, Vol. 16, no. 3 (60), Part 1,pp. 287–294. (in Ukrainian).
  31. Shevchenko, S.M., Rublenko, M.V.,Ulianchych, N.V., Klymenko, P.P. (2021). Histomorfolohichna kharakterystyka osteozamishchenniau kroliv hidroksyapatytnoiu keramikoiu ta fibrynom,zbahachenym trombotsytamy [Radiographic, macromorphological and hematological evaluationof hydroxyapatite ceramics with different physical and chemical properties]. Naukovyi visnykLNUVMB imeni S.Z. Gzhytskoho [Scientific Bulletin of LNUVVBT named after S.Z. Gzytsky].Veterynarni nauky [Veterinary sciences]. Vol. 23,no. 102, pp. 43–52. DOI:10.32718/nvlvet10207(in Ukrainian).
  32. Chemerovskyi, V.O. (2020). Renthenohrafichna, makromorfolohichna i hematolohichna otsinkahidroksyapatytnoi keramiky z riznymy fizyko-khimichnymy vlastyvostiamy [Histomorphologicalcharacteristics of bone replacement in rabbits withhydroxyapatite ceramics and fibrin enriched withplatelets]. Naukovyi visnyk veterynarnoi medytsyny[Scientific Bulletin of Veterinary Medicine]. no. 1,pp. 140–152. DOI:10.33245/2310-4902-2020-154-1-140-152 (in Ukrainian).
PDF icon todosiuk_1_2023.pdf949.73 KB