You are here

Comparison of osseointegration properties of individual and standard sized implants

According to clinical and radiological studies,the presented samples of calcium-phosphate ceramicimplants fully perform the osteoconductive function.However, in the case of their dense contact with theedges of the bone defect (experimental group), the primary inflammatory-resorptive stage of reparative osteogenesis turned out to be more intense and prolongedin time with pronounced phenomena of osteoresorptionof the mother bone and volumetric periosteal reactionas a compensatory mechanism. At the same time, osteoid formation is formed around the implant, while thecontrol implants are partially resorbed and replaced byosteoid tissue. As a result, macromorphologically, experimental implants in compact bone are visualized upto the 42nd day, and in cancellous bone - up to the 30thday, while the control implants are covered with boneregenerate already on the 14th day, which in the lattercase indicates the presence of osseointegration processes. The histological picture in the case of experimentalimplants confirms the prolongation of the inflammatory-resorptive stage with the formation of cartilage-boneregenerate around them, i.e. the dense placement of theimplants causes biomechanical pressure on the walls ofthe bone defect with the development of a reaction inthem, primarily to a foreign body.The study of the effect on reparative osteogenesis of the osseointegration properties of the developednew individual and standard-sized bioactive ceramicimplants based on clinical-radiological, macromorphological and histomorphological justification is relevant,as it will make it possible to evaluate their advantagesin terms of consolidation of complex defective fractures of tubular bones and reduce the frequency of theircomplications in animals.

Key words: rabbits, bioceramics, reparative osteogenesis, bone defects.

  1. Rublenko, S.V., Yeroshenko, S.V. (2012).Monitorynh veterynarnoi dopomohy i struktura khirurhichnoi patolohii sered dribnykh domashnikh tvaryn vumovakh miskoi kliniky [Monitoring of veterinary careand the structure of surgical pathology among smalldomestic animals in the conditions of a city clinic].Visnyk Sumskoho NAU [Bulletin of the Sumy NAU].no. 1 (30), pp. 150–154 (in Ukraine).
  2. Nojiria, A., Nishidoa, T., Horinakaa, O. (2015).Initial Clinical Application and Results of the AdvancedLocking Plate System (ALPS) in Small Animal Orthopedics: Two Hundred Eighty Two Procedures. Intern JAppl Res Vet Med., Vol. 13, no. 1, pp. 64–79.
  3. Bryner, M.F., Hoey, S.E., Montavon, S. (2020).Long-term clinical and radiographic results after lagscrew ostheosynthesis of short incomplete proximalsagittal fractures of the proximal phalanx in horses notused for racing. Veterinary Surgery. Vol. 49, pp. 88–95.DOI:10.1111/vsu.13314
  4. Enel, O.O., Ergin, I., Ozdemir, O. (2014). Treatment of Orthopaedic Problems with Manuflex Disposable External Fixator in 15 Dogs and 7 Cats. Treatmentof Orthopaedic Problems. pp. 799–808. DOI:10.9775/kvfd.2014.11154
  5. Dias, L.G.G.G., Padilha, Filho J.G., Conceição,M.E.B.A.M. (2018). Description and post-operativeevaluation of tie-in technique in tibial osteosynthesisin dogs. Pesq. Vet. Bras. no. 38 (7), pp. 1376–1381.DOI:10.1590/1678-5150-PVB-554
  6. Priyanka, T.S., Mohindroo, J., Pallavi, V.(2019). Evaluation of intramedullary pinning techniquefor management of tibia fractures in dogs. The PharmaInnovation Journal, Vol. 8 (2), pp. 291–297.
  7. Laurent, P.G., Reunan, P.G., Loic, M.D.(2019). Minimally invasive percutaneous medial platerod osteosynthesis for treatment of bicondylar humeralfractures in dogs: Surgical technique and case rep ort.The American College of Veterinary Surgeons. pp. 1–7.DOI:10.1111/vsu.13196
  8. Kallianpur, N., Singh, A., Gopinathan, K.(2019). A preliminary investigation on effects of two different corticalscrew configurations on locking plates forthe repair of simple diaphyseal long bone fractures indogs. The J. Anim. Plant Sci., no. 29 (2), pp. 437–447.
  9. Rohanizadeh, R., Geros, L.R.Z., Harsono, M.,Bendavid, A. (2005). Adherent apatite coating on titanium substrate using chemical deposition. Journal ofBiomedical Materials Research Part A, Vol. 72 (4), pp.428–438. DOI:10.1002/jbm. a.30258
  10. Kawai, T., Takemoto, M., Fujibayashi, S.(2014). Comparison between alkali heat treatment andsprayed hydroxyapatite coating on thermally-sprayedrough Ti surface in rabbit model: Effects on bone-bonding ability and osteoconductivity. Journal of BiomedicalMaterials Research Part B: Applied Biomaterials, Vol.103 (5), pp. 1069–1081. DOI:10.1002/jbm.b.33281
  11. O' Sullivan, C., O' Neill, L., O' Leary, N.D.(2021). Osteointegration, antimicrobial and antibiofilmactivity of orthopaedic titanium surfaces coated withsilver and strontium-doped hydroxyapatite using a novel blasting process. Drug Deliv Transl Res. Vol. 11(2),pp. 702–716. DOI:10.1007/s13346-021-00946-1.
  12. Shvets, A.Y., Yvchenko, V.K., Samoilenko, A.A.(2011). Lechenye perelomov dlynnykh kostei s kostnym defektom [Treatment of long bone fractureswith a bone defect]. Travma [Trauma]. no. 2, Vol. 12,pp. 95–98. (in Ukraine).
  13. Finkemeier, C.G. (2002). Bone-Grafting andBone-Graft Substitutes. J. Bone Joint Surg. Am., 84 p.
  14. Uvarova, I.V., Horbyk, P.P., Horobets, S.V.(2014). Nanomaterialy medychnoho pryznachennia[Nanomaterials for medical purposes]. Kyiv: ScientificOpinion, 416 p. (in Ukraine).
  15. Oryan, A., Alidadi, S. (2017). Application ofBioceramics in Orthopedics and Bone Tissue Engineering. Bone Regeneration. no. 1, pp. 1–73.
  16. Wang, L., Zhang, B., Bao, C. (2014). Ectopic Osteoid and Bone Formation by Three Calcium-Phosphate Ceramics in Rats, Rabbits and Dogs.PLoS ONE. Vol. 9 (9), 107044 p. DOI:10.1371/journal.pone.0107044
  17. Angelescu, A., Kleps, I., Mihaela, M. (2003).Porous silicon matrix for applications in biology.Rev. Adv. Sci. Vol. 5, pp. 440–449.
  18. Maximillian, C.O., Andi, A.I., Mochammad, H.(2018). Effects of platelet-rich plasma and carbonatedhydroxyapatite combination on cranial defect BoneRegeneration: An animal study. Wound Medicine.Vol. 21, pp. 12–15.
  19. Smurna, O.V. (2009). Zastosuvannia ekstrakortykalnoho osteosyntezu ta hidroksylapatytu "kerhap" pry perelomakh klubovoi kistky u sobak: avtoref.dys. kand. vet. nauk: spets. 16.00.05 [The use of extracortical osteosynthesis and "kergap" hydroxylapatitefor fractures of the iliac bone in dogs: autoref. thesisfor obtaining sciences. candidate degree Vet. Sciences:16.00.05.]. Bila Tserkva, 20 p. (in Ukraine).
  20. Rublenko, M.V., Dudka, V.B., Semeniak, S.A.(2015). Morfo-renthenolohichna i biokhimichnakharakterystyka reparatyvnoho osteohenezu za zamishchennia kistkovykh defektiv Biominom-HT u tvaryn[Morpho-radiological and biochemical characteristicsof reparative osteogenesis for replacing bone defectswith Biomin-HT in animals]. Visnyk Bilotserkiv. nats. ahrar. un-tu. [Bulletin of the Bila Tserkva National Agrarian University]. no. 1 (118), pp. 98–106. (inUkraine).
  21. Shymon, V.M., Meklesh, Yu.Iu., Alfeldii,S.P. (2020.) Vykorystannia V-trykaltsiifosfatu v skladihranul pry likuvanni perelomiv dovhykh kistok [Theuse of B-tricalcium phosphate in the composition ofgranules in the treatment of long bone fractures]. Scientific Journal, Science Rise: Medical Science, Vol.1 (34), pp. 63–67. (in Ukraine). DOI:10.15587/2519-4798.2020.193800
  22. Vyrva, O.Ie., Honcharuk, O.V., Lysenko, N.Ts.(2021). Porivnialne otsiniuvannia polimetylmetakrylatuta kompozytnoho kistkovoho tsementu [Comparativeevaluation of polymethyl methacrylate and compositebone cement]. Ohliad rezultativ eksperymentalnykhdoslidzhen [Review of experimental research results].Ortopedyia, travmatolohyia y protezyrovanye [Orthopedics, traumatology and prosthetics]. no. 1, pp. 86–91.(in Ukraine). DOI:10.15674/0030-59872021186-91.
  23. Lee, D.S., Pai, Y., Chang, S., Kim, D. (2016).Microstructure, physical properties, and bone regeneration efect of the nano sized β-tricalcium phosphategranules. Mater. Sci. Eng. Vol. 58, pp. 971–976.
  24. Dorozhkin, S.V. (2015). Calcium orthophosphate-containing biocomposites and hybrid biomaterials for biomedical applications. Journal of FunctionalBiomaterials, Vol. 6, pp. 708–832.
  25. Huang, Y., Wu, C., Zhang, X. (2017). Regulation of immune response by bioactive ions releasedfrom silicate bioceramics for bone regeneration. ActaBiomaterialia. Vol. 3, pp. 48–57.
  26. Reznik, L.B., Erofeev, S.A., Stasenko, I.V.(2019). Morphological assessment of osteointegration of various implants for management of long bonedefects (experimental study). Genij Ortopedii. no. 3,Vol. 25, pp. 318–323. DOI: 10.18019/1028-4427-2019-25-3-318-323.
  27. Todosiuk, T.P. (2020). Rentheno- ta makromorfolohichna otsinka reparatyvnoho osteohenezu za implantatsii hidroksyapatytnoho kompozytu, lehovanohohermaniiem [X-ray and macromorphological assessmentof reparative osteogenesis after implantation of germanium-doped hydroxyapatite composite]. Naukovyivisnyk veterynarnoi medytsyny [Scientific Bulletin ofVeterinary Medicine], no. 2, pp. 183–194. (in Ukraine).DOI:10.33245/2310-4902-2020-160-2-183-194
  28. Rahmati, M., Pennisi, C.P., Budd, E. (2018).Biomaterials for Regenerative Medicine: Historical Perspectives and Current. Adv Exp MedBiol – Cell Biology and Translational Medicine.DOI:10.1007/5584_2018_278
  29. Rublenko, M.V., Chemerovskyi, V.O., Vlasenko, V.M. (2018). Otsinka osteointehratsiinykh i osteoinduktyvnykh vlastyvostei keramiky, lehovanoikremniiem, za modelnykh perelomiv stehnovoi kistkyu kroliv [Evaluation of osseointegration and osteoinductive properties of silicon-doped ceramics for modelfemur fractures in rabbits]. Naukovyi visnyk veterynarnoi medytsyny [Scientific Bulletin of Veterinary Medicine]. Issue 144 (2), pp. 37–46. (in Ukraine). DOI:10.33245/2310-4902-2018-144-2-37-46
  30. Todosiuk, T.P., Rublenko, M.V., Vlasenko, V.M.,Ulianchych, N.V. (2022). Rentheno-makromorfolohichna i biokhimichna otsinka konsolidatsii perelomivdovhykh trubchastykh kistok v umovakh osteozamishchennia kaltsii-fosfatnoiu keramikoiu, lehovanoiuhermaniiem, za osteoporozu v kroliv [X-ray macromorphological and biochemical assessment of consolidation of fractures of long tubular bones under the conditions of osteoreplacement with calcium-phosphateceramics doped with germanium for osteoporosis inrabbits]. NV LNU veterynarnoi medytsyny ta biotekhnolohii [National University of Veterinary Medicine and Biotechnology]. Seriia: Veterynarni nauky[Series: Veterinary Sciences], 24 (106), pp. 149–157.(in Ukraine). DOI:10.32718/nvlvet10623
  31. Smurna, O.V., Ilnitskyi, M.H. (2008). Reheneratsiia kistkovoi tkanyny v umovakh plastyky defektivkistok taza hidroksylapatytnoiu keramikoiu [Regeneration of bone tissue under the conditions of plasticityof pelvic bone defects with hydroxylapatite ceramics].Visnyk Bilotserkiv. derzh. ahrar. un-tu. [Bulletin of theBila Tserkva State Agrarian University]. Issue 57, pp.141–147. (in Ukraine).
  32. Chemerovskyi,. V.O. (2020). Renthenohrafichna, makromorfolohichna i hematolohichna otsinka hidroksyapatytnoi keramiky z riznymy fizyko-khimichnymy vlastyvostiamy [Radiographic,macromorphological and hematological evaluation ofhydroxyapatite ceramics with different physical andchemical properties]. Naukovyi visnyk veterynarnoimedytsyny [Scientific Bulletin of Veterinary Medicine].no. 1, pp. 140–152. (in Ukraine). DOI:10.33245/2310-4902-2020-154-1-140-152
  33. Ulianchych, N.V. (2021). Formuvannia vlastyvostei kaltsii-fosfatnoi keramiky dlia reheneratyvnoi medytsyny: avtoref. dys. … kand. tekhn. nauk:05.02.01. [Formation of properties of calcium-phosphate ceramics for regenerative medicine: abstract ofthe dissertation of the candidate of technical sciences:05.02.01.]. Kyiv, 27 p. (in Ukraine).
  34. Sallam, S.M., Ahmedl, L.M., Amin, A., Alakraa, A.M. (2020). The Effects of nano hydroxyapatiteand nano hydroxyapatite doped by magnesium on fracture healing in dogs. Benha Veterinary Medical Journal, Vol. 38, pp. 47–51.
  35. Rublenko, M.V., Chemerovskyi, V.O., Vlasenko, V.M., Ulianchych, N.V., Klymenko, P.P. (2021).Dynamika biokhimichnykh kistkovykh i endotelialnykh pokaznykiv za zamishchennia kistkovykh defektiv u sobak hidroksyapatytnoi keramikoiu, lehovanoiukremniiem [Dynamics of biochemical bone and endothelial indicators after replacement of bone defectsin dogs with silicon-doped hydroxyapatite ceramics].Naukovyi visnyk veterynarnoi medytsyny [ScientificBulletin of Veterinary Medicine], no. 1, pp. 191–200.(in Ukraine).
  36. Gorter, D.J., Dinther, M., Korchynskyi, O., Dijke, P. (2011). Biphasic effects of transforming growthfactor β on bone morphogenetic protein-induced osteoblast differentiation. Journal of Bone and MineralResearch, Vol. 26 (6), pp. 1178–1187. DOI:10.1002/jbmr.313
  37. Quinlan, E., López-Noriega, A., Thompson, E.M.,Hibbitts, A. (2015). Controlled release of vascular endothelial growth factor from spray-dried alginate microparticles in collagen–hydroxyapatite scaffolds forpromoting vascularization and bone repair. J. Tissue.Eng. Regen. Med. DOI:10.1002/term.2013
  38. Othman, Z., Fernandes, H., Groot, A.J., Luider, T.M. (2019). The role of ENPP1/PC-1 in osteoinduction by calcium phosphate ceramics. Biomaterials.Vol. 210, pp. 12–24. DOI:10.1016/j.biomaterials.2019.
PDF icon ulianchych_1_2023.pdf4.67 MB