You are here

Determination of antibiotic susceptibility in isolates from dogs and cats

Microorganisms are able to rapidly acquire antibiotic resistance through mutation, memory gene transfer and epigenetic changes. Various factors contribute to the spread of antibiotic-resistant bacteria in healthcare, agriculture/livestock, and the environment due to their irrational and excessive use. These resistant microorganisms (Escherichia coli, Staphylococcus aureus, Proteus spp.) and their genes get into the soil, air, water, agricultural waste, and wastewater treatment plants and spread in the environment. Zoonotic pathogens are particularly dangerous. Scientists and healthcare practitioners are developing global strategies, which primarily include improving the identification and monitoring of the spread of resistant pathogens. The aim of our research was to determine the sensitivity of microorganisms isolated from companion animals to antibacterial drugs. For the microbiological study, biological material was collected from different infectious processes. We found resistance to various antibiotics in Staphylococcus aureus isolates. In particular, the most resistant isolates were to ceftriaxone (7.14 %), cefazolin (5.36 %) and ampicillin (5.36 %). In the study of Staphylococcus aureus isolates, the highest resistance was found to erythromycin, lincomycin, which was significantly higher (p<0.001) compared to the obtained resistance rates to tetracycline and ceftriaxone. And in the isolated isolates of Staphylococcus epidermidis, resistance to gentamicin, erythromycin, lincomycin, cephatoxin, ampicillin was detected, which was significantly (p<0.001) higher compared to the resistance data obtained for tetracycline, ciprofloxacin, ceftriaxone. The most resistant E. coli isolates were to lincomycin (10.34 %), ceftriaxone (10.34 %), tetracycline (8.62 %) and norfloxacin (8.62 %).

Keywords: antibiotic resistance, antibiotics, spread, microorganisms, Escherichia coli, Staphylococcus aureus, Proteus spp

  1. Tillotson, G. S., Zinner, S. H. (2017). Burden of antimicrobial resistance in an era of decreasing susceptibility. Expert. Rev. Anti. Infect. Ther. Vol. 15, no. 10, pp. 663–676. DOI:10.1080/14787210.2017.1337508.
  2. EUCAST. (2013). Shchodo vyznachennia mekhanizmiv rezystentnosti ta spetsyfichnoi rezystentnosti, shcho maie klinichne ta/abo epidemiolohichne znachennianazva [EUCAST. Regarding the identification of resistance mechanisms and specific resistance of clinical and/or epidemiological significance]. Availale at:www.eucast.org. (in Ukrainian).
  3. Kim, B.K., Hwang, H.C., Wang, S.H., Choi, S.R. (2019). Characterization of mcr-1-harboring plasmids from pan drug-resistant Escherichia coli strains isolated from retail raw chicken in South Korea. Microorganisms, Vol. 7, no. 9, pp. 344–355. DOI:10.3390/microorganisms7090344.
  4. Velasco, V.J., Vergara, L.A., Bonilla, M., Muñoz A.M., Vallejos, D.H. (2018). Prevalence and characterization of Staphylococcus aureus Foodborne Pathog. Clinical microbiology reviews. Vol. 2, no. 15, pp. 262–268. DOI:10.1089/fpd.2017.2381.
  5. Igbinosa, E.O., Beshiru, A.D., Akporehe, L.U., Oviasogie, F.E., Igbinosa, O. O. (2016). Prevalence of methicillin-resistant Staphylococcus aureus and other Staphylococcus species in raw meat samples intended for human consumption in Benin City, Nigeria: implications for public health, Environ Res Public Health. Vol. 8, no. 13, 949 p. DOI:10.3390/ijerph1310 0949.
  6. Bourne, J.A., Chong, W.L., Gordon, D.M. (2019). Genetic Structure, Antimicrobial Resistance and Frequency of Human Associated Escherichia coli Sequence Types among Faecal Isolates from Healthy Dogs and Cats Living in Canberra, Australia. PLoS ONE, Vol. 2, no. 14, pp. 276–312. DOI:10.1371/journal.pone.0212867.
  7. Mukerji, S.O., Dea, M.F., Barton, M.S., Kirkwood, R.Y., Lee, T.W., Abraham, S.R. (2017). Development and Transmission of Antimicrobial Resistance among Gram-Negative Bacteria in Animals and Their Public Health Impact. Essays Biochem. Vol. 9, no. 61, pp. 23–35. DOI:10.1042/ebc20160055.
  8. Hata, A.O., Fujitani, N.S., Yoshikawa, Y.V. (2022). Surveillance of Antimicrobial-Resistant Escherichia coli in Sheltered Dogs in the Kanto Region of Japan. Sci. Rep., Vol. 6, no. 12. 773 p. DOI:41598-021-04435-w.
  9. Akhtardanesh, B.H., Ghanbarpour, R.R., Ganjalikhani, S.P., Gazanfari, P.A. (2016). Determination of Antibiotic Resistance Genes in Relation to Phylogenetic Background in Escherichia coli Isolates from Fecal Samples of Healthy Pet Cats in Kerman City. Vet. Res. Forum Int. Q. Vol. 2, no. 5, pp. 301–308.
  10. Wedley, A.L., Dawson, S.T., Coyne, K.P., Pinchbeck, G.L., Clegg, P.Y, Nuttall, T.O., Williams, N.J. (2017). Carriage of Antimicrobial Resistant Escherichia coli in Dogs: Prevalence, Associated Risk Factors and Molecular Characteristics. Vet. Microbiol. Vol. 8, no. 199, pp. 23–30. DOI:10.1016/j.vetmic.2016.11.017.
  11. Rodrigues, A.C., Belas, A.G., Marques, C.S., Cruz, L.U., Gama, L.T, Pomba. (2018). Risk factors for nasal colonization by methicillin-resistant staphylococci in healthy humans in professional daily contact with companion animals in Portugal. Microb Drug Resist. Vol. 24, no. 4, pp. 434–46. DOI:10.1089/mdr.2017.0063.
  12. Gómez-Sanz, E.O., Ceballos, S.X., Ruiz-Ripa, L.K., Zarazaga, M.V., Torres, C.L. (2019). Clonally diverse methicillin and multidrug resistant coagulase negative staphylococci are ubiquitous and pose transfer ability between pets and their owners. Front Microbiol. Vol. 6, no. 10, 56 p. DOI:10.3389/fmicb.2019.00485.
  13. Maali, Y.D., Badiou, C.T., Martins-Simões, P.B., Hodille, E.B. (2018). Understanding the virulence of staphylococcus pseudintermedius: a major role of pore-forming toxins. Front. Cell. Infect. Microbiol. Vol. 8, no. 1, 221 p. DOI:10.3389/fcimb.2018.00221.
  14. Corrò, M.L., Skarin, J.T., Börjesson, S.D., Rota, A.P. (2018). Occurrence and characterization of methicillin-resistant Staphylococcus pseudintermedius in successive parturitions of bitches and their puppies in two kennels in Italy. BMC Vet. Res. Vol. 14, no. 1, 308 p. DOI:10.1186/s12917-018-1612-z.
  15. Deguchi, H.G., Kitazawa, K.W., Kayukawa, K.B., Kondoh, E.X., Fukumoto, A.K., Yamasaki, T.S. (2018). The trend of resistance to antibiotics for ocular infection of Staphylococcus aureus, coagulase-negative staphylococci, and Corynebacterium compared with 10-years previous: a retrospective observational study. PLoS One., Vol. 13, no. 9, 175 p. DOI:10.1371/journal.pone.0203705.
  16. Abdel-Moein, K.A., Zaher, H.M. (2020). The nasal carriage of coagulase-negative staphylococci among animals and its public health implication. Vector Borne Zoonotic Dis. Vol. 29, no. 12, pp. 897–902. DOI:10.1089/vbz.2020.2656.
  17. Schultz, E.D., Cloeckaert, A.M., Doublet, B.L., Madec, J.-Y., Haenni, M.D. (2017). Detection of SGI1/PGI1 elements and resistance to extended-spectrum cephalosporins in Proteae of animal origin in France. Front. Microbiol. Vol. 8, no. 32, pp. 56–62. DOI:10.3389/fmicb.2017.00032.
  18. Yakhnin, H.A., Yakhnin, A.V., Mouery, B.L., Mandell, Z.F., Karbasiafshar, C.G., Kashlev, M.X., Babitzke, P.E. (2019). NusG-Dependent RNA polymerase pausing and tylosin-dependent ribosome stalling are required for tylosin resistance by inducing 23S rRNA methylation in Bacillus subtilis. mBio. Vol. 10, no. 16, pp. 19–22. DOI:10.1128/mbio.02665-19.
  19. Salmanov, A.H. (2019). Borotba z antymikrobnoiu rezystentnistiu: plan dii Ukrainy [Combating Antimicrobial Resistance: Ukraine's Action Plan]. Praktyka upravlinnia zakladom okhorony zdorovia [Healthcare Facility Management Practices]. no. 11, pp. 37–54. (in Ukrainian).
  20. MEB. (2019). Vyznachennia antybiotykorezystentnosti [OIE: Determination of antibiotic resistance]. 21 p. Availale at: https://www.who.int/ukraine/uk/publications/9789241516822. (in Ukrainian).
  21. EUCAST. (2021). European committee on antimicrobial susceptibility testing. SOP, 34 p.
  22. Hassoun, A.O., Linden, P.K., Friedman, B.D. (2017). Incidence, prevalence, and management of MRSA bacteremia across patient populations‐a review of recent developments in MRSA management and treatment. Crit Care. Vol. 17, no. 21, 211 p. DOI:10.1186/s13054-017-1801-3.
  23. ECDC Surveillance of antimicrobial resistance in Europe 2018, Stockholm: European Centre for Disease Prevention and Control. 2019. Availale at:https://www.ecdc.europa. eu/en/publications-data/ surveillance-antimicrobial-resista nce-europe-2018.
  24. FOPH Swiss Antibiotic Resistance Report. Usage of Antibiotics and Occurrence of Antibiotic Resistance in Bacteria from Humans and Animals in Switzerland. 2018. Availale at: https://www.academia.edu/87287533/Swiss_antibiotic_resistance_ report_2018_Usage_of_antibiotics_and_occurrence_ of_antibiotic_resistance_in_bacteria_from_humans_ and_animals_in_Switzerland.
  25. Yang, B.K., Yang, F.L., Wang, S.G., Wang, Q.J., Liu, Z.H., Feng, W.V., Sun, F.N., Xia, P.M. (2018). Analysis of the spectrum and antibiotic resistance of uropathogens in outpatients at a tertiary hospital. Journal of Chemotherapy, Vol. 30, no. 3, pp. 145–149. DOI:10.1080/1120009X.2017.1418646.
  26. Chervet, D.M., Lortholary, O.V., Zahar, J.R., Dufougeray, A.D., Pilmis, B.S., Partouche, H.H. (2017). Antimicrobial resistance in community-acquired urinary tract infections in Paris in 2015. Médecine et Maladies Infectieuses. Vol. 48, no. 3, pp. 188–192. DOI:10.1016/j.medmal.2017.09.013.
  27. Seitz, M.K., Stief, C.Y., Waidelich, R.H. (2017). Local epidemiology and resistance profiles in acute uncomplicated cystitis (AUC) in women: A prospective cohort study in an urban urological ambulatory setting. BMC Infectious Diseases. Vol. 17, no. 7. Availale at:https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-017-2789-7.
  28. Tacconelli, N.K., Magrini, Y.D., Carmeli, S.I., Harbarth, G.V., Kahlmeter, J.F., Kluytmans, M.X., Mendelson, C.E., Pulcini, N.A., Singh, U.M. (2017). Theuretzbacher Global priority list of antibioticresistant bacteria to guide research, discovery, and development of new antibiotics. World Health Organization. Vol. 4, no. 8, pp. 1–7. DOI:10.1016/s1473-3099(17) 30753-3.
AttachmentSize
PDF icon chemerovska_2_2024.pdf4.97 MB