You are here

Examination of urine microflora and resistance of isolated pathogens during inflammatory processes of the urinary tract in dogs

Antibiotic-resistant bacteria are currently frequently isolated from pets and farm animals. The long-term irrational use of antibiotics for the treatment of animals and humans is underestimated and requires further attention and research, including in Ukraine. The aim of our study was to identify bacterial isolates and study their sensitivity to antibiotics in urinary tract inflammation in dogs. According to the statistical data of the VetForce system of the BTNAU clinic, out of 202 dogs examined in the clinic, 15 (7.43 %) were diagnosed with diseases with signs of urinary tract inflammation. It has been established that a large number of microorganisms, mainly E. coli, Streptococcus urinae, Pseudomonas aeruginosa and Staphylococcus aureus, causes inflammatory processes of the urinary tract in dogs. A less common microorganism, Klebsiella pneumonia, proved to be resistant. It was found that bacterial cystitis (the first group of animals) prevailed 1.5 times more often than in animals with urolithiasis. In dogs of the first group of 6–12 years old and over 12 years old, the percentage of the disease was higher compared to the group from 0.6 to 1.6 years old by 10.2 and 22.2 %, respectively. Dogs of the second group, aged 1.6–12 years, suffering from urolithiasis (66.6 %), suffer from bacterial diseases 4 times more often compared to animals aged 0.6–1.6 years. Streptococcus urinae, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus were isolated and identified from the urine of dogs in this group. In the associated form, E. coli and Streptococcus pyogene predominated in the urine of dogs. A resistant strain of Klebsiella pneumonia to amoxicillin, streptomycin, kanamycin, gentamicin and tetracycline was identified. Antibiotics should be used rationally, taking into account that for the treatment of animals it is necessary to determine the sensitivity of the pathogen with which the animal was infected. Antibiotic therapy should be carried out until complete elimination, which is sometimes achieved through prolonged treatment.

Key words: microorganisms, distribution, pathogens, urine, dogs, resistance, antibiotics, urinary tract, bacteriological testing.

  1. Schell, R.C., Bulut, E., Padda, H., Safi, A.G., Moroni, P. (2022). Responsible antibiotic use labeling and consumers willingness to buy and pay for fluid milk. J. Dairy Sci., no. 106, pp. 132–150. DOI:10.3168/jds.
  2. Schmidt, T., Ferrara, F., Pobloth, A.M., Jeuthe, S. (2021). Large Farm Animals Used for Research Purposes: A Survey on Purchase, Housing and Hygiene Management. Animals (Basel). no. 11, Vol. 8, 2158 p. DOI:10.3390/ani11082158.
  3. Guyomard, H., Bouamra-Mechemache, Z., Chatellier, V., Delaby, L., Détang-Dessendre, C. (2021). Review: Why and how to regulate animal production and consumption: The case of the European Union. Animal. no. 15, Vol. 1, pp. 1751–7311. DOI:10.1016/j. animal.2021.100283.
  4. Speksnijder, D.C., Wagenaar, J.A. (2018). Reducing antimicrobial use in farm animals: how to support behavioral change of veterinarians and farmers. Animal Frontiers. no. 8, Vol. 2, pp. 4–9. DOI:10.1093/ af/vfy006
  5. Martin, H., Manzanilla, E.G., More, S.J. (2020). Current antimicrobial use in farm animals in the Republic of Ireland. Ir Vet. no. 73, Vol. 11, pp. 88–96. DOI:10.1186/s13620-020-00165-z
  6. Spellberg, B.G.R., Hansen, A., Kar, C.D., Cordova, L.B., Price, D. Antibiotic Resistance in Humans and Animals. NAM Perspectives. Discussion Paper, National Academy of Medicine, Washington. DOI:10.31478/201606d
  7. Baym, M., Stone, L.K., Kishony, R. (2016). Multidrug evolutionary strategies to reverse antibiotic resistance. no. 13, Vol. 51, pp. 95–108. DOI:10.1126/ science. aad3292
  8. Davies, J., Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. no. 74, Vol. 3, pp. 417–433. DOI:10.1128/ MMBR.00016-10.
  9. Santos-Lopez, A., Marshall, C.W., Haas, A.L., Turner, C., Rasero, J. (2021). The roles of history, chance, and natural selection in the evolution of antibiotic resistance. e Life. Vol. 21, pp. 68–98. DOI:10.7554/ eLife.70676
  10. Hasan, C.M., Dutta, D., Nguyen, A.N.T. (2022). Revisiting Antibiotic Resistance: Mechanistic Foundations to Evolutionary Outlook. Antibiotics. Vol. 11, pp. 40–52. DOI:10.3390/antibiotics11010040
  11. Baquero, F. (2021). Threats of antibiotic resistance: an obliged reappraisal. Int Microbiol. no. 24, pp. 499–506. DOI:10.1007/s10123-021-00184-y
  12. Galindo-Méndez, M. (2020). Antimicrobial Resistance in Escherichia coli. E. soli Infections - Importance of Early Diagnosis and Efficient Treatment. DOI:10.5772/intechopen.93115
  13. Vivas, R., Barbosa, A.A.T., Dolabela, S.S., Jain, S. (2019). Multidrug-Resistant Bacteria and Alternative Methods to Control Them: An Overview. Microbial Drug Resistance. no. 11, pp. 890–908. DOI:10.1089/mdr.2018.0319
  14. Reygaert, W.C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology. no. 4, Vol. 3, pp. 482–501. DOI: 10. 3934/microbiol.2018.3.482
  15. Ruppé, E., Woerther, P.L., Barbier, F. (2015). Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann. Intensive Care. no. 5, Vol. 21, pp. 54–63. DOI:10.1186/s13613-015-0061-0
  16. Muñoz-Ibarra, E., Molina-López, R.A., Durán, I., Garcias, B., Martín, M., Darwich, L. (2022). Antimicrobial Resistance in Bacteria Isolated from Exotic Pets: The Situation in the Iberian Peninsula. Animals. no. 12, Vol. 19, pp. 96–109. DOI:10.3390/ani12151912
  17. Jeżak, K., Kozajda, A. (2022). Occurrence and spread of antibiotic-resistant bacteria on animal farms and in their vicinity in Poland and Ukraine — review. Environ Sci Pollut. no. 29, pp. 9533–9559. DOI:10.1007/s11356-021-17773-z
  18. Argudín, M.A., Deplano, A., Meghraoui, A., Dodémont, M., Heinrichs, A. (2017). Bacteria from Animals as a Pool of Antimicrobial Resistance Genes. Antibiotics (Basel). no. 6, Vol. 2, pp. 12–26. DOI:10.3390/ antibiotics6020012.
  19. Pomba, C., Rantala, M., Greko, C., Baptiste, K.E., Catry, B. (2017). Public health risk of antimicrobial resistance transfer from companion animals, Journal of Antimicrobial Chemotherapy, Vol. 72, pp. 957–968. DOI:10.1093/jac/dkw481
  20. Lee, S., Fan, P., Liu, T. (2022). Transmission of antibiotic resistance at the wildlife-livestock interface. Commun. no. 5, pp. 572–585. DOI:10.1038/s42003- 022-03520-8
  21. Lazăr, V., Gheorghe, I., Curutiu, C. (2021). Antibiotic resistance profiles in cultivable microbiota isolated from some romanian natural fishery lakes included in Natura 2000 network. BMC. Vol. 17, pp. 41–52. DOI:10.1186/s12917-021-02770-8
  22. Tang, K.L., Caffrey, N.P., Nóbrega, D.B. (2019). Comparison of different approaches to antibiotic restriction in food-producing animals: stratified results from a systematic review and meta-analysis. BMJ Global Health. no. 4, pp. 17–30. DOI:10.1136/ bmjgh-2019-001710
  23. Saad, M.M.E., Mohamed, B.M.A. (2018). Necessary Usage of Antibiotics in Animals. Antibiotic Use in Animals. InTech. DOI:10.5772/intechopen.71257.
  24. Dadgostar, P. (2019). Antimicrobial Resistance: Implications and Costs. Infect Drug Resist. no. 20, Vol. 12, pp. 3903–3910. DOI:10.2147/IDR.S234610.
  25. Ponyon, J., Kerdsin, A., Preeprem, T., Ungcharoen, R. (2022). Risk Factors of Infections Due to Multidrug-Resistant Gram-Negative Bacteria in a Community Hospital in Rural Thailand. Trop. Med. Infect. Dis. Vol. 7, pp. 311–328. DOI:10. 3390/tropicalmed7110328
  26. Mancuso, G., Midiri, A., Gerace, E., Biondo C. (2021). Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens. no. 10, pp. 1301–1310. DOI:10. 3390/pathogens10101310
  27. Miller, S.A., Ferreira, J.P., LeJeune, J.T. (2022). Antimicrobial Use and Resistance in Plant Agriculture: A One Health Perspective. no. 12, pp. 278–289. DOI:10.3390/agriculture12020289
  28. Manyi-Loh, C., Mamphweli, S., Meyer, E., Okoh A. (2018). Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules. no. 23, Vol. 4, pp. 782–795. DOI:10.3390/ molecules23040795.
  29. Miethke, M., Pieroni, M., Weber, T. (2021). Towards the sustainable discovery and development of new antibiotics. Nat Rev Chem. no. 5, pp. 726–749. DOI:10.1038/s41570-021-00313-1
  30. Redfern, J., Bowater, L., Coulthwaite, L., Verran, J. (2020). Raising awareness of antimicrobial resistance among the general public in the UK: the role of public engagement activities, JAC-Antimicrobial Resistance. Vol. 2, pp. 93–109. DOI:10.1093/jacamr/ dlaa012
  31. Pravyla vidboru zrazkiv patolohichnoho materialu, krovi, kormiv, vody ta peresylannia yikh dlia laboratornoho doslidzhennia [Rules for the selection of samples of pathological material, blood, fodder, water and their forwarding for laboratory examination]. Zatverdzheno vid 15 kvitnia 1997 r. № 15- 14/111 [Approved on April 15, 1997 No. 15-14/111]. (in Ukrainian). Available at: files/%D0%9F%D1%3.pdf
  32. Nambisan, P. (2017). Laboratory Biosafety and Good Laboratory Practices. An Introduction to Ethical, Safety and Intellectual Property Rights Issues in Biotechnology. Vol. 2, pp. 53–71. DOI:10.1016/B978-0- 12-809231-6.00011-9.
  33. Cornish, N.E., Anderson, N.L., Arambula, D.G., Arduino, M.J., Bryan, A. (2021). Clinical Laboratory Biosafety Gaps: Lessons Learned from Past Outbreaks Reveal a Path to a Safer Future. Clin Microbiol Rev. no. 34, Vol. 3, pp. 586–599. DOI:10.1128/ CMR.00126-18.
  34. Quesnel Julie.Coloration de Gram: protocole, résultats, positive, négative. Le journal des femmes sante. 06.07. 2022. Available at: fiches-anatomie-et-examens/2833541-coloration-de-gram-protocole-resultats-positif/.
  35. Sakhniuk, V.V., Tyrsin, R.V., Rublenko, M.V., Rublenko, I.O. Standartni operatsiini protsedury (SOR) iz biobezpeky [Biosafety Standard Operating Procedures (SOP)]. Protokol iz zasidannia vchenoi rady FVM BNAU vid 28 serpni 2019 r. 1 [Minutes from the meeting of the academic council of the Faculty of Science of the BNA on August 28, 2019. 1]. 122 p. (in Ukrainian) Available sites/default/ files/news/pdf/norm_doc_pechat/s.pdf.
  36. Smith, A., Hussey, M.A. (2016). American society for microbiology. Gram stain protocols. 9 p. Available at: 9a5ece3/gram-stain-protocol-2886.pdf.
  37. Rublenko, I.O., Zotsenko, V.M., Taranukha, S.I., Ostrovskyi, D.M. (2019). Zahalna mikrobiolohiia [General microbiology]. Metodychni vkazivky dlia praktychnoi ta samostiinoi roboty studentiv fakultetu veterynarnoi medytsyny z mikrobiolohichnykh metodiv doslidzhen [Methodological guidelines for practical and independent work of students of the Faculty of Veterinary Medicine on microbiological research methods]. Bila Tserkva, 67 p. (in Ukrainian)
  38. European committee on antimicrobial susceptibility testing. SOP EUCAST. 2021. Available at:
  39. Fonseca, J.D., Mavrides, D.E., Graham, P.A., McHugh, T.D. (2021). Results of urinary bacterial cultures and antibiotic susceptibility testing of dogs and cats in the UK. The Journal of Small Animal Practice, no. 62, Vol. 12, pp. 1085–1091. DOI:10.1111/jsap.13406.
  40. Zambarbieri, J., Grilli, G., Vitiello, T., Scarpa, P. (2021). Urinary tract infection by atypical uropathogens in dogs. Veterinaria Italiana. no. 57, Vol. 1, pp. 89–92. DOI:10.12834/VetIt.2110.12149.1.
  41. Punia, M., Kumar, A., Charaya, G., Kumar, T. (2018). Pathogens isolated from clinical cases of urinary tract infection in dogs and their antibiogram. Veterinary World. no. 11, Vol. 8, pp. 1037–1042. DOI:10.14202/ vetworld.2018. 1037-1042.
  42. Burton, E.N., Cohn, L.A., Reinero, C.N., Rindt, H., Moore, S.G., Ericsson, A.C. (2017). Characterization of the urinary microbiome in healthy dogs. PLoS One. no. 12, Vol. 5. DOI:10.1371/journal. pone.0177783.
  43. Zambarbieri, J., Grilli, G., Vitiello, T., Scarpa, P. (2021). Urinary tract infection by atypical uropathogens in dogs. Veterinaria Italiana. no. 57, Vol. 1, pp. 89–92. DOI:10.12834/VetIt.2110.12149.1.
  44. Breshears, M.A., Confer, A.W. (2017). The Urinary System. Pathologic Basis of Veterinary Disease. pp. 617–681. DOI:10.1016/B978-0-323-35775- 3.00011-4.
  45. Zhang, D., Li, S., Zhang, Z. (2021). Urinary stone composition analysis and clinical characterization of 1520 patients in central China. no. 11, pp. 64–67. DOI: 10.1038/s41598-021-85723-3.
  46. Terlizzi, M.E., Gribaudo, G., Maffei, M.E. (2017). Uro Pathogenic Escherichia coli (UPEC) Infections: Virulence Factors, Bladder Responses, Antibiotic, and Non-antibiotic Antimicrobial Strategies. Front Microbiol. no. 8, Vol. 15, pp. 51–66. DOI:10.3389/ fmicb.2017.01566.
  47. Coulthard, M.G. (2019). Using urine nitrite sticks to test for urinary tract infection in children aged 2 years: a meta-analysis. Pediatr Nephrol. no. 34, pp. 1283–1288. DOI:10.1007/s00467-019-04226-6.
  48. González, L.D., Moreno-Arribas, M.V., Bartolomé, B. (2020). Cranberry Polyphenols and Prevention against Urinary Tract Infections: Relevant Considerations. Molecules. no. 25, pp. 35–49. DOI:10.3390/ molecules25153523.
  49. Wnorowska, U., Piktel, E., Deptuła, P. (2022). Ceragenin CSA-13 displays high antibacterial efficiency in a mouse model of urinary tract infection. no. 12, pp. 64–78. DOI:10.1038/s41598-022-23281-y.
PDF icon rublenko_chemerovska_1_2023.pdf744.88 KB