You are here

Histomorphological assessment of the germanium-doped calcium phosphate ceramics on reparative osteogenesis in rabbits with systemic osteoporosis

Bone fractures are mostly urgent in nature, complex in pathogenetic, diagnostic and therapeutic aspects, and reparative osteogenesis is multimodal and depends on the balanced and reciprocal interaction of many factors. The results of histological studies for osteoreplacement of bone defects in rabbits with systemic osteoporosis are presented. The purpose of the work is histomorphological evaluation of bone regenerates after osteoreplacement with germanium-doped hydroxyapatite ceramics in rabbits with secondary osteoporosis. Experimental osteoporosis in rabbits (n=18) was induced by administration of 0.4% dexamethasone solution. In animals of the experimental group, bone defects were replaced with granules of hydroxyapatite ceramics doped with germanium, and in animals of the control group, they healed under a blood clot. Histological sections were made on a rotary microtome with a thickness of 5 to 10 μm and stained with Weigert's iron hematoxylin and 1% alcohol-based eosin solution (manufactured by Diapath, Italy). On the 60th day of reparative osteogenesis in the animals of the experimental group, the site of the bone defect was flled with compact bone tissue with minor remnants of spongy bone tissue. Slightly expanded Haversian canals were noted. In the control group, the defect site was flled with coarse and spongy bone tissue. Bone beams of various thicknesses with a small number of osteoblasts and single walled osteocytes were visualized. A signifcant number of osteocyte lacunae were empty due to the process of osteocyte lysis. Haversian canals are signifcantly dilated with a small number of vessels. Also, lacunae of bone tissue resorption and acellular areas were observed on histological specimens. Histomorphological assessment of bone regenerates confrms the realization of osteoconductive, osteointegrative and osteoinductive properties of calcium-phosphate ceramics doped with germanium in conditions of osteoporotic fractures of tubular bones.

Keywords: systemic osteoporosis, bone fractures, cancellous and compact bone tissue, histological sections, histomorphological changes, rabbits.

  1. Oryan, A., Alidadi, S., Moshiri, A., Maffulli, N. (2014). Bone regenerative medicine: classic options, novel strategies, and future directions. J. Orthop Surg Res., Vol. 9 (1), pp. 29–36. DOI:10.1186/1749-799x-9-18
  2. Haaland, P.J., Sjöström, L. (2009). Appendicular fracture repair in dogs using the locking compression plate system: 47 cases. Veterinary and Comparative Orthopaedics and Traumatology. Vol. 22, no. 4, pp. 309–315. DOI:10.3415/vcot08-05-0044
  3. Bumeister, V.I., Pohorelov, M.V. (2008). Suchasnyi pohliad na reparatyvnyi osteohenez [A mod- ern view of reparative osteogenesis]. Svit medytsyny ta biolohii [The world of medicine and biology]. 4, pp. 104–110. (In Ukrainian).
  4. Rublenko, M.V., Dudka, V.B., Semeniak, S.A. (2015). Morfo-renthenolohichna i biokhimichna kharakterystyka reparatyvnoho osteohenezu za zamishchennia kistkovykh defektiv Biominom-HT u tvaryn [Morpho-radiological and biochemical characteristics of reparative osteogenesis for replacing bone defects with Biomin-HT in animals]. Nauk. visnyk vet. medytsyny: zb. nauk. prats [Scientifc Bulletin of Veterinary Medicine: collection of scientifc papers]. Bila Tserkva, no. 1 (118), pp. 98–106. (In Ukrainian).
  5. Novitskyi, V.O., Sliusarenko, D.V. (2020). Osoblyvosti diahnostyky ta likuvannia nestabilnosti kryzhovo-klubovoho suhlobu u sobak [Features of diagnosis and treatment of sacroiliac joint instability in dogs]. Veterynariia, tekhnolohii tvarynnytstva ta pryrodokorystuvannia [Veterinary medicine, animal husbandry technologies and nature management]. pp. 105–109. DOI:10.31890/vttp.2020.05.19 (In Ukrainian).
  6. Rublenko, M.V., Andriiets, V.H., Semeniak, S.A. (2015). Vykorystannia kompozytnykh materialiv za perelomiv trubchastykh kistok u tvaryn [The use of composite materials for fractures of tubular bones in animals]. Bila Tserkva, 86 p. (In Ukrainian).
  7. Pustovit, R.V. (2007). Kharakterystyka perelomiv trubchastykh kistok u dribnykh domashnikh tvaryn [Characteristics of fractures of tubular bones in small domestic animals]. Visnyk Bilotserkiv. derzh. ahrar. un–tu [Bulletin of the Bilotserki State Agrarian University], Issue 44, pp. 124–127. (In Ukrainian).
  8. Rychel, J.K. (2010). Diagnosis and Treatment of Osteoarthritis. Topics in Companion Animal Medicine. Vol. 25, no. 1, pp. 20–25. DOI:10.1053/j.tcam.2009.10.005
  9. Won, S., Chung, W.-J., Yoon, J. (2017). Clinical application of quantitative computed tomography in osteogenesis imperfecta-suspected cat. Journal of Veterinary Science, Vol. 18, no. 3, 415 p. DOI:10.4142/ jvs.2017.18.3.415
  10. Wang, J.W., Li, W., Xu, S.W. (2005). Osteoporosis influences the middle and late periods of fracture healing in a rat osteoporotic model. Chin. J. Traumatol., 8, pp. 111‒116.
  11. Lelovas, P.P., Xanthos, T.T., Thoma, S.E., Lyritis, G.P., Dontas, I.A. (2008). The laboratory rat as an animal model for osteoporosis research. Comp Med. 58 (5), pp. 424‒430.
  12. Lopez, M., Schachner, E. (2015). Diagnosis, prevention, and management of canine hip dysplasia: a review. Veterinary Medicine: Research and Reports. 181 p. DOI:10.2147/vmrr.s53266
  13. Kobayashi, R. (2015). Spontaneous and bilateral necrosis of the femoral head in a young experimental beagle dog. Journal of Toxicologic Pathology, Vol. 28, no. 2, pp. 121–124. DOI:10.1293/tox.2014-0060
  14. Dittmer, K.E., Pemberton, S.A. (2021). Holistic Approach to Bone Tumors in Dogs and Cats: Radiographic and Histologic Correlation. Veterinary Pathology. Vol. 58, no. 5, pp. 841–857. DOI:10.1177/03009 85821999832
  15. Agnoli, C. (2023). A retrospective study on bone metastasis in dogs with advanced‐stage solid cancer. Journal of Small Animal Practice. DOI:10.1111/jsap.13621
  16. Burton, A.G. (2015). Journal of the American Veterinary Medical Association. Vol. 247, no. 7, pp. 778–785. DOI:10.2460/javma.247.7.778
  17. Rubin, J.A. (2015). Factors associated with pathological fractures in dogs with appendicular primary bone neoplasia: 84 cases (2007–2013). Journal of the American Veterinary Medical Association, Vol. 247, no. 8, pp. 917–923. DOI:10.2460/javma.247.8.917
  18. Fan, T.M. (2008). The Bone Biologic Effects of Zoledronate in Healthy Dogs and Dogs with Malignant Osteolysis. Journal of Veterinary Internal Medicine, Vol. 22, no. 2, pp. 380–387. DOI:10.1111/j.1939- 1676.2008.0046.x
  19. Szabó, Z., Szabó, G. (1978). The effect of haemorrhage and bone fracture on bone marrow circulation. Research in Experimental Medicine. Vol. 172, no. 1, pp. 7–17. DOI:10.1007/bf01851061
  20. Remedios, A. (1999). Bone and Bone Healing. Veterinary Clinics of North America: Small Animal Practice. Vol. 29, no. 5, pp. 1029–1044. DOI:10.1016/s 0195-5616(99)50101-0
  21. Zheng, J.-S., Ruan, H.-R., Hou, K.-W. (2020). Therapeutic effects of revascularisation on the healing of free bone grafts in dogs. Journal of Veterinary Research, Vol. 64, no. 1, pp. 175–180. DOI:10.2478/jvetres-2020-0023
  22. Todosiuk, T.P., Rublenko, M.V., Vlasenko, V.M., Ulianchych, N.V. (2022). Rentheno-makromorfolohichna i biokhimichna otsinka konsolidatsii perelomiv dovhykh trubchastykh kistok v umovakh osteozamishchennia kaltsii-fosfatnoiu keramikoiu, lehovanoiu hermaniiem, za osteoporozu v kroliv [X-ray macromorphological and biochemical assessment of consolidation of fractures of long tubular bones under the conditions of osteoreplacement with calcium-phosphate ceramics doped with germanium for osteoporosis in rabbits]. Naukovyi visnyk LNUVMB imeni S.Z. Gzhytskoho [Scientifc Bulletin of LNUVMB named after S.Z. Gzhitskyi]. Seriia: Veterynarni nauky [Series: Veterinary Sciences]. Vol. 24, no. 106, pp. 149–157. DOI:10.32718/nvlvet10623. (In Ukrainian).
  23. Oheim, R. (2016). Can we induce osteoporosis in animals comparable to the human situation? Injury. Vol. 47, pp. 3–9. DOI:10.1016/s0020-1383(16)30002-x
  24. Giannoudis, P. (2007). Fracture healing in osteoporotic fractures: Is it really different? Injury. Vol. 38, no. 1, pp. 90–99. DOI:10.1016/j.injury.2007.02.014
  25. Besalti, O. (2016). Imaging and surgical outcomes of spinal tumors in 18 dogs and one cat. Journal of Veterinary Science, Vol. 17, no. 2, 225 p. DOI:10.4142/jvs.2016.17.2.225
  26. Rubin, J. A. (2015). Factors associated with pathological fractures in dogs with appendicular primary bone neoplasia: 84 cases (2007–2013). Journal of the American Veterinary Medical Association, Vol. 247, no. 8, pp. 917–923. DOI:10.2460/javma.247.8.917
  27. Johnson, K.A. (2019). Risks and Outcomes of Equine Flat Bone Fractures. Veterinary and Compara- tive Orthopaedics and Traumatology. Vol. 32, no. 4:v. DOI:10.1055/s-0039-1693467
  28. Samol, M.A. (2020). Characteristics of complete tibial fractures in California racehorses. Equine Veterinary Journal. DOI:10.1111/evj.13375
  29. Hobbenaghi, R. (2014). Histopathological features of bone regeneration in a canine segmental ulnar defect model. Diagnostic Pathology. Vol. 9, no. 1. DOI:10.1186/1746-1596-9-59
  30. Cheng, L.J., Yu, T., Shi, Z. (2017). Osteoinduction Mechanism of Calcium Phosphate Biomaterials In Vivo: A Review. Journal of biomaterials and tissue engineering, Vol. 7, pp. 911–918.
  31. Chim, H.J. (2009). Biomaterials in craniofacial surgery: experimental studies and clinical application. Craniofac. Surg. Vol. 20 (1), pp. 29–33.
  32. Uvarova, I.V. (2014). Nanomaterialy medychnoho pryznachennia: monohrafia / za red. akad. NAN Ukrainy V.V. Skorokhoda, In-t problem materialoznavstva im. I. M. Frantsevycha [Nanomaterials for medical use: monograph / edited by Acad. NAS of Ukraine V.V. Skorokhoda, Institute of Problems of Materials Science named after I. M. Frantsevicha]. Kyiv, Scientifc opinion, 414 p. (In Ukrainian).
  33. Moore, D.C., Chapman, M.W., Manske, D. (1987). The evaluation of a biphasic calcium phosphate ceramic for use in grafting long-bone diaphyseal defects. Journal of Orthopaedic Research, Vol. 5, no. 3, pp. 356–365. DOI:10.1002/jor.1100050307
  34. Manjubala, I., Sastry, T.P., Kumar, R.V.S. (2005). Bone In-growth Induced by Biphasic Calcium Phosphate Ceramic in Femoral Defect of Dogs. Journal of Biomaterials Applications, Vol. 19, no. 4, pp. 341– 360. DOI:10.1177/0885328205048633
  35. Fujii, A., Kuboyama, N., Yamane, J., Nakao, S., Furukawa, Y. (1993) Effect of organic germanium compound (Ge-132) on experimental osteoporosis in rats. General Pharmacology: The Vascular System, 24 (6), pp. 1527–1532. DOI:10.1007/s10653-017-0061-0
  36. Li, L., Ruan, T., Lyu, Y., Wu, B. (2017). Advancesin Effect of Germanium or Germanium Compoundson Animals. Journalof Biosciences and Medicines, 5, pp. 56–73. DOI:10.4236/jbm.2017.57006
  37. Ismail, D.A., Noaman, E. (2007). Synthesis and Antitumour Activity of Four Germanium Amino Acid Complexes. Egyptian Journal of Chemistry, Vol. 50, pp. 29–37.
AttachmentSize
PDF icon todosiuk_1_2024.pdf789.38 KB