You are here

Identifi cation of Salmonella spp and serovars Typhimurium, Enteritidis by qPCR

This article presents the results of the identifi cation of the Salmonella genus as well as serovars Enteritidis and Typhimurium by a real-time polymerase chain reaction. We constructed three pairs of primers and fl uorescent probes to simultaneously identify the Salmonella genus, serovars Enteritidis and Typhimurium in a qPCR. The specifi city of the primers was evaluated on Salmonella strains of diff erent serovars from the National Center for Strains of Microorganisms (UNCMS) strains of the State Scientifi c Control Institute of Biotechnology and Strains of Microorganisms (SSCIBSM) and 46 Salmonella strains isolated from poultry. E. coli ATCC 25922, Bacillus cereus ATCC 11778, Listeria monocytogenes ATCC 19112 from UNCMS collection were used to check the specifi city of the primers as heterologous samples. Bacterial DNA was extracted using a DNA Sorb B (Amplisens) kit, and realtime PCR was accomplished with the "Real-time PCR kit" (Syntol) on Bio-rad CFX. A series of 10-fold S. Typhimurium and S. Enteritidis DNA dilutions were studied to evaluate the sensitivity of the primers: 10-1-10-5. The analytical sensitivity of primers for detection of the genus Salmonella is: for S. Typhimurium - 0.25 ng/sample (Typhimurium) and S. Enteritidis - 0.27 ng/ sample (Enteritidis). The results of the studies confi rmed the specifi city of the primer set and the high sensitivity. No hybridization of primers with DNA samples of other bacteria found, in particular, the nonspecifi c reaction products were absent. The primer sets for the detection of DNA of Enteritidis and Typhimurium serovars also has high specifi city. If necessary, this set of primers can be used to perform a multiplex qPCR, that can simultaneously identify bacteria of the Salmonella genus and diff erentiate Enteritidis and Typhimurium serovars.

Key words: Salmonella, bacteria, polymerasechainreaction, DNA, qPCR.

 

  1. Stegnіj B.T., Majboroda O.V., Medvіd' K.O., Muzika D.V., Rula O. M. (2018). Dinamіka formuvannja іmunnoї vіdpovіdі u kurej pіslja shheplennja іnaktivovanoju bіvalentnoju vakcinoju proti sal'monel'ozu pticі’ [Dynamics of formation of immune response in chickens after vaccination with inactivated bivalent vaccine against avian salmonellosis]. Veterinarna bіotehnologіja [Veterinary biotechnology]. Vol. 32(1), pp. 265–271.
  2. Merino, L., Procura, F., Trejo, F. M. (2019). ‘Biofi lm formation by Salmonella sp. in the poultry industry: Detection, control and eradication strategies’, Food Research International, 119(July), pp. 530–540. Available at:https:// doi.org/10.1016/j.foodres.2017.11.024.
  3. Andreoletti, O., Budka, H., Buncic, S. (2009). ‘Quantitative estimation of the impact of setting a new target for the reduction of Salmonella in breeding hens of Gallus gallus’, EFSA Journal. Vol. 7, no. 4, pp. 1–68. Available at:https://doi.org/10.2903/j.efsa.2009.1036.
  4. Bessarabov, B.F., Vashutin, A.A., Voronin, E.S. (2007). Infekcionnye bolezni zhivotnyh/Pod red. AA Sidorchuka [Infectious diseases of animals / Bessarabs and others; under the editorship of A.A. Sidorchuk]. Moscow: KolosS, 671 p.
  5. Swayne, D. E. (2013). Diseases of poultry. John Wiley & Sons. 1423 p.
  6. Іnstrukcіja z profіlaktiki ta lіkvіdacіi sal'monel'ozu pticі, zatverdzhena Mіnіsterstvom agrarnoi polіtiki ta prodovol'stva Ukraini 19.09.2016 № 310 [Instruction on prevention and elimination of salmonellosis of poultry: Order of the Ministry of Agrarian Policy and Food of Ukraine 09/19/2016 № 310]. Available at: https://zakon.rada.gov.ua/ rada/show/z1344-16.
  7. Terrestrial Animal Health Code. (2015). In Offi  ce International des Epizooties (OIE) editors. Prevention, detection and control of Salmonella in poultry (pp. 1e5). Paris: Offi  ce International des Epizooties.France.
  8. Hyeon, J.Y., Mann, D.A., Wang, J. (2019). Rapid detection of Salmonella in poultry environmental samples using real-time PCR coupled with immunomagnetic separation and whole genome amplifi cation’, Poultry Science. Poultry Science Association Inc. Vol. 98(12), pp. 6973–6979. Available at:https://doi.org/10.3382/ps/pez425.
  9. Boer, M.D., de Boer, R.F., Lameijer, A. (2019). Selenite enrichment broth to improve the sensitivity in molecular diagnostics of Salmonella. Journal of Microbiological Methods. Elsevier. Vol. 157(November 2018), pp. 59–64. Available at:https://doi.org/10.1016/j.mimet.2018.12.018.
  10. Pugliese, N., Circella, E., Marino, M. (2019). Circulation dynamics of Salmonella enterica subsp. enterica ser. Gallinarum biovar Gallinarum in a poultry farm infested by Dermanyssus gallinae. Medical and Veterinary Entomology. Vol. 33(1), pp. 162–170. Available at:https:// doi.org/10.1111/mve.12333.
  11. Meng, X., Meng, X., Wang, J. (2019). Small non-coding RNA STnc640 regulates expression of fi mA fi mbrial gene and virulence of Salmonella enterica serovar Enteritidis’, BMC veterinary research. BMC Veterinary Research. Vol. 15(1), 319 p. Available at:https://doi.org/10.1186/s12917-019-2066-7.
  12. Grimont, P.A., Weill, F.X. (2019). Antigenic formulae of the Salmonella serovars. Paris, France: WHO Collaborating Centre for Reference and Research on Salmonella. 2007.
  13. Foti, M., Aleo, A., Daidone, A. (2009.) Salmonella bongori 48:z35:- In migratory birds, Italy. Emerging Infectious Diseases. Vol. 15, no. 3, pp. 502–503. Available at:https://doi.org/10.3201/eid1503.080039.
  14. Ahmed, M.M., Rahman, M.M., Mahbub, K.R. (2010). Characterization of Antibiotic Resistant Salmonella spp Isolated from Chicken Eggs of Dhaka City. Journal of Scientifi c Research. Vol.  3,  no. 1, 191 p. Available at:https:// doi.org/10.3329/jsr.v3i1.6109.
  15. Shivaprasad, H. L. (2000) ‘Fowl typhoid and pullorum disease’, OIE Revue Scientifi que et Technique, 19(2), pp. 405– 424. Available at:https://doi.org/10.20506/rst.19.2.1222.
  16. Karisheva, A.F. (2002). "Specіal'na epіzootologіja: pіdruchnik" ["Special Epizootology: A Textbook"]. Kiiv, Vishha osvіta [Kyiv: Higher education]. 703 p.
  17. Galka, І.V., Muzikіna, L.M., Mandigra, S.S., Chehun, A.І., Sidorenko, T.V., Kravcova, O.L. (2019). Poshirennja sal'monel'ozu tvarin ta pticі v Ukraіnі u 2015– 2018 rokah [Prevalence of salmonellosis in animals and poultry in Ukraine in 2015–2018].Veterinarna bіotehnologіja [Veterinary biotechnology]. Issue 35, pp. 22–29. Available at:https://doi.org/10.31073/vet.
  18. Lee, K.M., Runyon, M., Herrman, T.J. (2015). Review of Salmonella detection and identifi cation methods: Aspects of rapid emergency response and food safety. Food Control. Elsevier Ltd. Vol. 47, pp. 264–276. Available at:https://doi.org/10.1016/j.foodcont.2014.07.011.
  19. Zhang, Z., Xiao, L., Lou, Y. (2015). Development of a multiplex real-time PCR method for simultaneous detection of Vibrio parahaemolyticus, Listeria monocytogenes and Salmonella spp. in raw shrimp. Food Control. Elsevier Ltd. Vol. 51, pp. 31–36. Available at:https://doi.org/10.1016/j. foodcont.2014.11.007.
  20. Delbeke, S., Ceuppens, S., Holvoet, K. (2015). Multiplex real-time PCR and culture methods for detection of Shiga toxin-producing Escherichia coli and Salmonella Thompson in strawberries, a lettuce mix and basil. International Journal of Food Microbiology. Vol. 193, pp. 1–7. Available at:https://doi.org/10.1016/j. ijfoodmicro.2014.10.009.
  21. Jia, Y. (2012). Chapter 3 – Real-Time PCR, Methods in Cell Biology. Elsevier. pp. 55–68.  Available at:https://doi. org/10.1016/B978-0-12-405914-6.00003-2.
  22. Aldridge, P., gnerer, J., Karlinsey, J.E. (2006). Transcriptional and translational control of the Salmonella fl iC gene. Journal of Bacteriology. Vol. 188, no. 12,  pp. 4487–4496. Available at:https://doi.org/10.1128/ JB.00094-06.
  23. Shanmugasundaram, M., Radhika, M., Murali, H.S. (2009). Detection of Salmonella enterica serovar Typhimurium by selective amplifi cation of fl iC, fl jB, iroB, invA, rfbJ, STM2755, STM4497 genes by polymerase chain reaction in a monoplex and multiplex format’, World Journal of Microbiology and Biotechnology. Vol.  25, no. 8, pp. 1385– 1394. Available at:https://doi.org/10.1007/s11274-009-0025-3.
  24. Pabbaraju, K. Gill, K., Wong, A.A. (2019). Simultaneous Detection and Diff erentiation between WildType and Vaccine Measles Viruses by a Multiplex RealTime Reverse Transcription-PCR Assay. Journal of clinical microbiology. Vol.  57, no. 4, pp. 1–9. Available at:https:// doi.org/ 10.1128/JCM.01828-18.
  25. Liu, J., Li, L. Min., Han, J. quan. (2019). A TaqMan probe-based real-time PCR to diff erentiate porcine epidemic diarrhea virus virulent strains from attenuated vaccine strains. Molecular and Cellular Probes. Elsevier. Vol. 45, pp. 37–42. Available at:https://doi.org/10.1016/j. mcp.2019.04.003.
  26. Rukambile, E., Alders, R. (2019). Infection, colonization and shedding of Campylobacter and Salmonella in animals and their contribution to human disease : A review. No. June 2018. pp. 1–17.
  27. The European Union summary report on trends and sources ofzoonoses, zoonotic agents and food-borne outbreaks in 2017EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control). 2018. EFSA Journal 2018. 16(12):5500, 262 p. Availeble at:https://doi.org/10.2903/j.efsa.2018.5500
AttachmentSize
PDF icon rublenko_1_2020.pdf5.14 MB