You are here

Microbiological and molecular genetic characterization of Staphylococcusaureus and Staphylococcuspseudintermedius

Coagulase-positive staphylococci are an important infectious agentcausing numerous infections in animals. Staphylococcus aureus andStaphylococcus pseudintermedius share a number of similar cultural andbiochemical characteristics, which makes their differentiation difficult.Since these species have different zoonotic potential, it is advisable todevelop rapid and specific schemes for species differentiation of pathogens.We have studied the cultural and biochemical characteristics ofStaphylococcus spp. isolated from dogs, cats and cows. In total, 103halophilic coccal cultures were isolated from companion animals and45 from cows, of which 55 and 30 cultures were coagulase-positivestaphylococci, respectively. The reactions that can be used to differentiateS. pseudintermedius and S. aureus were studied. Growth inhibition zonesaround the disk with polymyxin B antibiotic for S. pseudintermediuswere statistically higher (p<0.001) than for S. aureus. The determinationof acetone production to differentiate between these pathogens hasless specificity, as 30% of S. pseudintermedius showed a false-positivereaction. The belonging of two isolates to the species Staphylococcuspseudintermedius was confirmed by MALDI-TOF.The virulence of staphylococci is due to the presence of genesthat regulate the synthesis of various pathogenicity factors and causeantibiotic resistance. Molecular genetic methods can detect the presenceof gene specificity and help to assess the risk of a particular strain causinginfection. Using classical and real-time PCR, the mecA gene was detectedin 8 S. aureus strains and 1 S. pseudintermedius strain that showedphenotypic resistance to methicillin. The pathogenicity genes lukF andsiet were present in 100%, and the lukS gene in 90% of the studiedStaphylococcus pseudintermedius.The study highlights a number of aspects of the diagnosis anddifferentiation of coagulase-positive staphylococci. The possibility ofusing the Neonatal FAST well D-ONE microculture system for use inveterinary laboratories was also studied. The data obtained can be usedto develop methodological approaches to the identification of pathogenicstaphylococci using a combination of different methods.

Key words: S. pseudintermedius, resistance to methicillin,pathogenicity genes, MALDI-TOF MS.

 

  1. Gherardi, G., Di Bonaventura, G., Savini, V.(2018). Staphylococcal Taxonomy: In Pet-To-ManTravelling Staphylococci. Cambridge: Academic Press,pp. 1–10. DOI:10.1016/B978-0-12-813547-1.00001-7
  2. Madhaiyan, M., Wirth, J. S., Saravanan, V. S.(2020). Phylogenomic analyses of the Staphylococcaceae family suggest the reclassification of five species within the genus Staphylococcus as heterotypicsynonyms, the promotion of five subspecies to novelspecies, the taxonomic reassignment of five Staphylococcus species to Mammaliicoccus gen. nov., and theformal assignment of Nosocomiicoccus to the familyStaphylococcaceae. International journal of systematicand evolutionary microbiology, no. 70 (11), pp. 5926–5936. DOI:10.1099/ijsem. 0.004498
  3. Kosecka-Strojek, M., Buda, A., Międzobrodzki, J. (2018). Staphylococcal Ecology and Epidemiology. In Pet-To-Man Travelling Staphylococci.Cambridge: Academic Press, pp. 11–24. DOI:10.1016/B978-0-12-813547-1.00002-9.
  4. Pickering, A. C., Yebra, G., Gong, X., Goncheva, M. I., Wee, B. A., MacFadyen, A. C., Muehlbauer, L. F.,Alves, J., Cartwright, R. A., Paterson, G. K., Fitzgerald, J. R. (2021). Evolutionary and Functional Analysisof Coagulase Positivity among the Staphylococci, no.6(4), e0038121. DOI:10.1128/mSphere.00381-21
  5. Divyakolu, S., Chikkala, R., Ratnakar, K. S.,Sritharan, V. (2019). Hemolysins of Staphylococcusaureus — An update on their biology, role in pathogenesis and as targets for anti-virulence therapy. Advances in Infectious Diseases, no. 9 (2), pp. 80–104.DOI:10.4236/aid. 2019.92007
  6. Pontieri, E. (2018) The Staphylococcal Hemolysins. in Pet-To-Man Travelling Staphylococci. Cambridge: Academic Press, pp. 103–116. DOI:10.1016/B978-0-12-813547-1.00008-X .
  7. Ryman, V. E., Kautz, F. M., Nickerson, S. C.(2021). Case Study: Misdiagnosis of NonhemolyticStaphylococcus aureus Isolates from Cases of BovineMastitis as Coagulase-Negative Staphylococci. Animals: an open access journal from MDPI, no. 11 (2),252 p. DOI:10. 3390/ani11020252
  8. Savini, V., Carretto, E., Polakowska, K., Fazii, P., Międzobrodzki, J., D'Antonio, D. (2013). MayStaphylococcus pseudintermedius be non-haemolytic?. Journal of medical microbiology, no. 62, Part 8, pp. 1256–1257. DOI:10.1099/jmm.0.061952-0
  9. González-Martín, M., Corbera, J. A.,Suárez-Bonnet, A., Tejedor-Junco, M. T. (2020). Virulence factors in coagulase-positive staphylococci ofveterinary interest other than Staphylococcus aureus.The veterinary quarterly, no. 40 (1), pp. 118–131.DOI:10.1080/01652176. 2020.1748253
  10. Grispoldi, L., Karama, M., Armani, A., Hadjicharalambous, C., Cenci-Goga, B. T. (2021). Staphylococcus aureus enterotoxin in food of animal originand staphylococcal food poisoning risk assessmentfrom farm to table. Italian Journal of Animal Science, Vol. 20, no. 1, pp. 677–690 DOI:10.1080/1828051X.2020.1871428
  11. Colares, De Andrade A. P., Teixeira, DeFigueiredo E. A., Borges, M. D. F., Arcuri, E. F. (2019).Diversity of Staphylococcus coagulase- positive andnegative strains of coalho cheese and detection ofenterotoxin encoding genes. Boletim do Centro dePesquisa de Processamento de Alimentos, no. 1 (36).DOI:10.5380/bceppa.v36i1.57553
  12. Phumthanakorn, N., Fungwithaya, P., Chanchaithong, P., Prapasarakul, N. (2018). Enterotoxingene profile of methicillin-resistant Staphylococcuspseudintermedius isolates from dogs, humans and theenvironment. Journal of medical microbiology, no. 67(6), pp. 866–873. DOI:10.1099/jmm.0.000748
  13. Yarbrough, M. L., Lainhart, W., Burnham, C. A.(2018). Epidemiology, Clinical Characteristics, andAntimicrobial Susceptibility Profiles of Human Clinical Isolates of Staphylococcus intermedius Group.Journal of clinical microbiology, no. 56 (3), e01788-17.DOI:10.1128/JCM.01788-17
  14. Broekema, N. M., Van, T. T., Monson, T. A.,Marshall, S. A., Warshauer, D. M. (2009). Comparisonof cefoxitin and oxacillin disk diffusion methods fordetection of mecA-mediated resistance in Staphylococcus aureus in a large-scale study. Journal of clinicalmicrobiology, no. 47(1), pp. 217–219. DOI:10.1128/JCM.01506-08
  15. Bibby, H. L., Brown, K. L. (2021). Identification of Staphylococcus pseudintermedius Isolatesfrom Wound Cultures by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass SpectrometryImproves Accuracy of Susceptibility Reporting at anIncrease in Cost. Journal of clinical microbiology, 59(11), e0097321. DOI:10.1128/JCM.00973-21
  16. Bhooshan, S., Negi, V., Khatri, P. K. (2020).Staphylococcus pseudintermedius: an undocumented,emerging pathogen in humans. GMS hygiene and infection control, no. 15. DOI:10.3205/dgkh000367
  17. Sasaki, T., Tsubakishita, S., Tanaka, Y., Sakusabe, A., Ohtsuka, M., Hirotaki, S., Kawakami, T., Fukata, T., Hiramatsu, K. (2010). Multiplex-PCR methodfor species identification of coagulase-positive staphylococci. Journal of clinical microbiology, no. 48 (3), pp.765–769. DOI:10.1128/JCM.01232-09
  18. Shevchenko, M., Andriichuk, A., Naumchuk, V.,Petruk, I., Bilyk, S., Tsarenko, T. (2023). Zoonotic Staphylococcus spp. among domestic animals inUkraine: antibiotic resistance and diagnostic approaches. Regulatory Mechanisms in Biosystems, no. 14 (3).DOI:10.15421/022356
  19. Shevchenko, M., Andriichuk, A. (2023). Antibiotic resistance of isolates of Staphylococcus spp.and Streptococcus spp. causing mastitis on dairy farmsin Ukraine. Scientific journal of veterinary medicine,2023. no. 1, рр. 81–88. DOI:10.33245/2310-4902-2023-180-1-81-88
  20. Moraes, G.F., Cordeiro, L.V., Júnior, F.P.(2021). Main laboratory methods used for the isolationand identification of Staphylococcus spp. Rev. colomb.cienc. quim. farm. no. 1 (50), pp. 5–28. DOI:10.15446/rcciquifa.v50n1.95444
  21. Meroni, G., Soares Filipe, J. F., Drago, L.,Martino, P. A. (2019). Investigation on Antibiotic-Resistance, Biofilm Formation and Virulence Factorsin Multi Drug Resistant and Non Multi Drug Resistant Staphylococcus pseudintermedius. Microorganisms, no. 7 (12), 702 p. DOI:10.3390/microorganisms7120702
  22. Shevchenko, M., Tarasov, O., Andriichuk, A.,Honcharenko, V., Tsarenko, T. (2023). Optimizationof laboratory PCR protocols for the accurate identification of S. Aureus and S. Pseudintermedius in dogs.Bulletin Veterinary Biotechnology, (43), pp. 175–185.DOI:10.31073/ vet_biotech43-17
  23. van Belkum, A., Welker, M., Pincus, D.,Charrier, J. P., Girard, V. (2017). Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry in Clinical Microbiology: What Are the Current Issues?. Annals of laboratory medicine, 37(6),pp. 475–483. DOI:10.3343/ alm.2017.37.6.475
  24. Murugaiyan, J., Walther, B., Stamm, I., Abou-Elnaga, Y., Brueggemann-Schwarze, S., Vincze, S.,Wieler, L. H., Lübke-Becker, A., Semmler, T., Roesler, U. (2014). Species differentiation within theStaphylococcus intermedius group using a refinedMALDI-TOF MS database. Clinical microbiology andinfection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 20 (10), pp. 1007–1015. DOI:10.1111/1469-0691.12662
  25. Rusenova, N., Krustev, S., Atanasov, A., Rusenov, A., Stanilova, S. (2020). Differentiation of Staphylococcus pseudintermedius in the Staphylococcus intermedius Group (SIG) by Conventional and MolecularMethods. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 26 (5). DOI:10.9775/kvfd.2020.23988
  26. Sasaki, T., Kikuchi, K., Tanaka, Y., Takahashi, N.,Kamata, S., Hiramatsu, K. (2007). Reclassification ofphenotypically identified staphylococcus intermediusstrains. Journal of clinical microbiology, 45 (9), pp.2770–2778. DOI:10.1128/JCM.00360-07
  27. Crespo-Piazuelo, D., Lawlor, P. G. (2021).Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) prevalence in humans inclose contact with animals and measures to reduce onfarm colonisation. Irish veterinary journal, 74 (1), 21 p. DOI:10.1186/s13620-021-00200-7
  28. Krukowski, H., Bakuła, Z., Iskra, M., Olender, A., Bis-Wencel, H., Jagielski, T. (2020). The firstoutbreak of methicillin-resistant Staphylococcus aureus in dairy cattle in Poland with evidence of on-farmand intrahousehold transmission. Journal of dairy science, no. 103 (11), pp. 10577–10584. DOI:10.3168/jds.2020-18291
  29. Papadopoulos, P., Papadopoulos, T., Angelidis, A. S., Boukouvala, E., Zdragas, A., Papa, A., Hadjichristodoulou, C., Sergelidis, D. (2018). Prevalenceof Staphylococcus aureus and of methicillin-resistant S. aureus (MRSA) along the production chain of dairyproducts in north-western Greece. Food microbiology,no. 69, pp. 43–50. DOI:10.1016/j.fm.2017.07.016
  30. Vishovan, Y., Ushkalov, V., Vygovska, L.,Ishchenko, L., Salmanov, A., Bilan, A., Kalakailo, L.,Hranat, A., Boianovskiy, S. (2021). Biofilm formationand antibiotic resistance in staphylococcus isolatedfrom different objects. EUREKA: Life Sciences, no.(4), pp. 58–65. DOI:10.21303/2504-5695.2021.001925
  31. Abdullahi, I. N., Zarazaga, M., Campaña-Burguet, A., Eguizábal, P., Lozano, C., Torres, C. (2022).Nasal Staphylococcus aureus and S. pseudintermediuscarriage in healthy dogs and cats: a systematic review oftheir antibiotic resistance, virulence and genetic lineagesof zoonotic relevance. Journal of applied microbiology,no. 133 (6), pp. 3368–3390. DOI:10.1111/jam.15803
  32. Garcês, A., Silva, A., Lopes, R., Sampaio, F.,Duque, D., Brilhante-Simões, P. (2022). Methicillin-Resistant Staphylococcus aureus (MRSA) andmethicillin-resistant Staphylococcus pseudintermedius(MRSP) in Skin Infections from Company Animals inPortugal (2013–2021). The 2nd International Electronic Conference on Antibiotics Drugs for Superbugs: Antibiotic Discovery, Modes of Action and Mechanismsof Resistance. MDPI. DOI:10.3390/eca2022-12689
  33. Fàbregas, N., Pérez, D., Viñes, J., Cuscó, A., Migura-García, L., Ferrer, L., Francino, O. (2023). DiversePopulations of Staphylococcus pseudintermedius Colonize the Skin of Healthy Dogs. Microbiology spectrum,Vol. 11 (2), e0339322. DOI:10.1128/spectrum.03393-22
  34. Abouelkhair, M. A., Bemis, D. A., Giannone, R. J.,Frank, L. A., Kania, S. A. (2018). Characterization of aleukocidin identified in Staphylococcus pseudintermedius. PloS one, 13 (9), e0204450. DOI:10.1371/journal.pone.0204450
  35. Glajzner, P., Szewczyk, E. M., Szemraj, M.(2023). Pathogenic potential and antimicrobial resistance of Staphylococcus pseudintermedius isolatedfrom human and animals. Folia microbiologica, no. 68(2), pp. 231–243. DOI:10.1007/s12223-022-01007-x
  36. Pitchenin, L. C., Brandão, L. N. S., Rosa, J. M. A.,Kagueyama, F. C., Alves, A. D. S., Rocha, Í. S. M., Nakazato, L., Dutra, V. (2018). Occurrence of toxin genesin Staphylococcus pseudintermedius from diseaseddogs and other domestic and wild species. Journal ofinfection in developing countries, no. 11 (12), pp. 957–961. DOI:10.3855/jidc.8261
  37. Kmieciak, W., Szewczyk, E. M. (2018). Arezoonotic Staphylococcus pseudintermedius strains agrowing threat for humans?. Folia microbiologica, no.63 (6), pp. 743–747. DOI:10.1007/ s12223-018-0615-2
AttachmentSize
PDF icon shevchenko_2_2023.pdf1.87 MB