You are here

Modern condition of the problem of Lime Borreliosis of animals (systematic review)

Lyme borreliosis (LB) is the most common tick-borne disease in the temperate climate of the Northern Hemisphere. LB is caused by spirochetes, which are grouped in the complex Borrelia burgdorferi sensu lato, vectors – Ixodidae mites, dozens of species of small mammals and birds actas reservoir hosts, and the role of reservoirs of domestic animals, such as dogs and cats, is not excluded. Although the ecology and epidemiology of the disease have been extensively studied in Europe and North America, there is considerable uncertainty regarding the study of Lyme borreliosis in veterinary medicine. Search, selection andanalysis of scientific data on the research topic were carried out according to acceptable rules for systematic reviews of the literature. The scientometric database Web of Science Core Collection, the database of scientific articles Pub Med and the database Scientific Periodicals of Ukraine were used. Seventy-four scientific articles were used for the article, which contained the necessary set of data and met the set goal. The article highlights the main issues of the etiology of the disease, which describes the characteristics of the pathogen, its properties, genotypic composition of Borrelia, which cause Lyme disease, the spread of pathogenic genotypes of Borrelia in Europe and Ukraine. The connection of Lyme borreliosis spread with ecological factors, climatic changes and anthropogenic impact on biocenoses and biotopes, the role of vectors and reservoir hosts in the spread of LB is described. Data on the prevalence and degree of infection of Ixodes mites with Borrelia, as well as the spread of LB among the population of Europe and Ukraine are presented. The seroprevalence of each of the animal species (dogs, cats, horses, ruminants), clinical manifestations of LB, if documented and indicators of LB prevalence among animals in Europe and Ukraine, as well as currently known treatments, prevention and diagnosis of LB animals are considered.

Key words: Borrelia Burgdorferi Sensu Lato, Lyme Diseases Etiology, Ixodidae.

  1. Strnad, M., Hönig, V., Růžek, D. (2017). Europe-Wide Meta-Analysis of Borrelia burgdorferi Sensu Lato Prevalence in Questing Ixodes ricinus Ticks. Applied and Environmental Microbiology. Vol. 83, no. 15. pp. 1–16. Doi:10.1128/ AEM.00609-17
  2. Batool, M., Caoili, S. E. C., Dangott, L. J. (2018). Identification of Surface Epitopes Associated with Protection against Highly Immune-Evasive VlsE-Expressing Lyme Disease Spirochetes. Infection and Immunity. Vol. 86, no. 8, pp. 1–23. Doi: 10.1128/IAI.00182-18
  3. Kilpatrick, A. M., Dobson, A. D. M., Levi, T. (2017). Lyme disease ecology in a changing world: Consensus, uncertainty and critical gaps for improving control. Philosophical Transactions of the Royal Society B: Biological Sciences. Vol. 372, no. 1722. Doi:10.1098/rstb.2016.0117
  4. Vandekerckhove, O., Buck, E. De, Wijngaerden, E.Van. (2019). Lyme disease in Western Europe: an emerging problem? A systematic review. Acta Clinica Belgica. pp. 1–9. Doi:10.1080/17843286.2019.1694293
  5. Sykes, R.A., Makiello, P. (2017). An estimate of Lyme borreliosis incidence in Western Europe. Journal of Public Health (United Kingdom). Vol. 39, no. 1, pp. 74–81. Doi:10.1093/pubmed/fdw017
  6. Boulanger, N., Boyer, P., Talagrand-Reboul, E. (2019). Ticks and tick-borne diseases. Medecine et Maladies Infectieuses. Vol. 49, no. 2, pp. 87–97. Doi:10.1016/j. medmal.2019.01.007
  7. Rogovskyy, A. S., Biatov, A. P., Davis, M. A. (2020). Upsurge of Lyme borreliosis in Ukraine: a 20-year survey. Journal of travel medicine. Vol. 27, no. 6, pp. 1–3. Doi:10.1093/jtm/taaa100
  8. Gryczyńska, A., Gortat, T., Kowalec, M. (2018). Urban rodent reservoirs of Borrelia spp. In Warsaw, Poland. Epidemiology and Infection. Vol. 146, no. 5, pp. 589–593. Doi:10.1017/S095026881800033X
  9. Soroka, N., Ovcharuk, N., Ovcharuk, V. (2019). Lyme disease prevention in dogs(domestic and fore ignex perience). Ukrainian journal of veterinary sciences. Vol. 10, no. 2, pp. 58–66. Doi:10.31548/ujvs2019.02.058
  10. Littman, M. P., Gerber, B., Goldstein, R. E. ACVIM consensus update on Lyme borreliosis in dogs and cats. Journal of Veterinary Internal Medicine. 2018. Vol. 32, no. 3, pp. 887–903. Doi:10.1111/jvim.15085
  11. Margos, G., Lane, R. S., Fedorova, N. (2016). Borrelia bissettiae sp. nov. And Borrelia californiensis sp. nov. Prevail in diverse enzootic transmission cycles. International Journal of Systematic and Evolutionary Microbiology. Vol. 66, no. 3, pp. 1447–1452. Doi:10.1099/ijsem.0.000897
  12. Liu, Y., Nordone, S. K., Yabsley, M. J. (2019). Quantifying therelationship between human lyme disease and Borrelia burgdorferi exposure in domestic dogs. Geospatial Health. Vol. 14, no. 1. Doi:10.4081/gh.2019.750
  13. Žákovská, A., Schánilec, P., Treml, F. (2020). Seroprevalence of antibodies against borrelia burgdorferi S. L. and leptospira interrogans S. L. In cats in district of brno and its environs, the Czech Republic. Annals of Agricultural and Environmental Medicine. Vol. 27, no. 3, pp. 356–360. Doi:10.26444/ aaem/122804
  14. Gupta, S., Rajiah, P., Middlebrooks, E. H. (2018). Systematic Review of the Literature: Best Practices. Academic Radiology. Vol. 25, no. 11, pp. 1481–1490. Doi: 10.1016/j.acra.2018.04.025
  15. Cutler, S.J., Ruzic-Sabljic, E., Potkonjak, A. (2017). Emerging borreliae – Expanding beyond Lyme borreliosis. Molecular and Cellular Probes. Vol. 31, pp. 22–27. Doi:10.1016/j.mcp.2016.08.003
  16. Cutler, S.J., Rudenko, N., Golovchenko, M. (2017). Diagnosing Borreliosis. Vector-Borne and Zoonotic Diseases. Vol. 17, no. 1, pp. 2–11. Doi:10.1089/vbz.2016.1962
  17. Steere, A. C., Strle, F., Wormser, G. P. (2016). Lyme borreliosis. Nature Reviews Disease Primers. Vol. 2. Doi:10.1038/nrdp.2016.90
  18. Veinović, G., Ćakić, S., Mihaljica, D. (2020). Comparison of growth and morphology of Borrelia burgdorferi sensu lato in BSK-H and BSK-II media stored for prolonged periods. Apmis. Vol. 128, no. 10, pp. 552–557. Doi:10.1111/apm.13069
  19. Caskey, J. R., Hasenkampf, N. R., Martin, D. S. (2019). The functional and molecular effects of doxycycline treatment on borrelia burgdorferi phenotype. Frontiers in Microbiology. Vol. 10, pp. 1–11. Doi: 10.3389/fmicb.2019.00690
  20. Ćakić, S., Veinović, G., Cerar, T. (2019). Diversity of Lyme borreliosis spirochetes isolated from ticks in Serbia. Medical and Veterinary Entomology. Vol. 33, no. 4, pp. 512–520. Doi:10.1111/mve.12392
  21. Ružiæ-Sabljiæ, E., Maraspin, V., Stupica, D. (2017). Comparison of MKP and bsk-h media for the cultivation and isolation of borrelia burgdorferi sensu lato. PLoS ONE. Vol. 12, no. 2, pp. 1–11. Doi:10.1371/ journal.pone.0171622
  22. Johnson, R. C., Schmid, G. P., Hyde, F.W. (1984). Borrelia burgdorferisp. nov.: Etiologic agent of Lyme disease. International Journal of Systematic Bacteriology. Vol. 34, no. 4, pp. 496–497. Doi: 10.1099/00207713-34-4-496
  23. Baranton, G., Postic, D., Girons, I.S. (1992). Delineation of Borrelia burgdorferi Sensu Stricto, Borrelia garinii sp. nov., and Group VS461 Associated with Lyme Borreliosis. International Journal of Systematic Bacteriology. Vol. 42, no. 3, pp. 378–383. Doi: 10.1099/00207713-42-3-378
  24. Canica, M.M., Nato, F., Merle, L.Du. (1993). MonoclonalAntibodiesforIdentification of Borrelia afzeliisp. nov. Associated with Late Cutaneous Manifestations of Lyme Borreliosis. Scandinavian Journal of Infectious Diseases. Vol. 25, no. 4, pp. 441–448.Doi:10.3109/ 00365549309008525
  25. Kawabata, H., Masuzawa, T., Yanagihara, Y. (1993). Genomic analysis of Borrelia japonica sp. nov. isolated from Ixodes ovatus in Japan. Microbiol Immunol. Vol. 37, no. 11, pp. 843–848.PMID: 7905183
  26. Schwartz, I.R.A. (1995). Identification of Novel Insertion Elements, Restriction Fragment Length Polymorphism Patterns, and Discontinuous 23S rRNA in Lyme Disease Spirochetes : Phylogenetic Analyses of rRNA Genes and Their Intergenic Spacersin Borrelia japonica sp. nov. and. Journal of Clinical Microbiology. Vol. 33, no. 9, pp. 2427–2434.
  27. Wang, G., Dam, A.P.V., Fleche, A. L. E. (1997). Genetic and Phenotypic Analysis of Bowelia valaisiana sp. nov. (Bowelia Genomic Groups VS116 and M19). International Journal of Systematic Bacteriology. Vol. 19, pp. 926–932. Doi:10.1099/00207713-47-4-926
  28. Fukunaga, M., Hamase, A., Okada, K. (1996). Borrelia tanukii sp. nov. And Borrelia turdae sp. nov. Found from ixodid ticks in Japan: rapid species identification by 16S rRNA genetargeted PCR analysis. Microbiol Immunol. Vol. 40, no. 11, pp. 877–881. Doi:10.1111/j.1348-0421.1996.tb01154.x
  29. Masuzawa, T., Takada, N., Kudeken, M. (2001). Borrelia sinica sp. nov., a lyme disease-related Borrelia species isolated in China. International Journal of Systematic and Evolutionary Microbiology. Vol. 51, no. 5, pp. 1817–1824. Doi:10.1099/00207713-51-5-1817
  30. Richter, D., Postic, D., Sertour, N. (2006). Delineation of Borrelia burgdorferi sensu lato species by multilocus sequence analysis and confirmation of the delineation of Borrelias pielmanii sp. nov. International Journal of Systematic and Evolutionary Microbiology. Vol. 56, no. 4, pp. 873–881. Doi: 10.1099/ijs.0.64050-0
  31. Chu, C.Y., Liu, W., Jiang, B.G. (2008). Novel Genospecies of Borrelia burgdorferi Sensu Lato from Rodents and Ticks in South western China. Journal of Clinical Microbiology. Vol. 46, no. 9, pp. 3130–3133. Doi: 10.1128/ JCM.01195-08
  32. Margos, G., Vollmer, S. A., Cornet, M. (2009). A New Borrelia Species Defined by Multilocus Sequence Analysis of Housekeeping Genes. Applied and Environmental Microbiology. Vol. 75, no. 16, pp. 5410–5416. Doi:10.1128/ AEM.00116-09
  33. Rudenko, N., Golovchenko, M., Lin, T. (2009). Delineation of a New Species of the Borrelia burgdorferi Sensu Lato Complex, Borrelia americana sp. nov. Journal of Clinical Microbiology. Vol. 47, no. 12, pp. 3875–3880. Doi:10.1128/JCM.01050-09
  34. Rudenko, N., Golovchenko, M., Grubhoffer, L. (2009). Borrelia carolinensis sp. nov., a New (14th) Member of the Borrelia burgdorferi Sensu Lato Complex from the Southeastern Region of the United States. Journal of Clinical Microbiology. Vol. 47, no. 1, pp. 134–141. Doi: 10.1128/JCM.01183-08
  35. Casjens, S. R., Fraser-Liggett, C. M., Mongodin, E. F. (2011). Whole Genome Sequence of an Unusual Borrelia burgdorferi Sensu Lato Isolate. Journal of Bacteriology. Vol. 193, no. 6, pp. 1489–1490. Doi: 10.1128/JB.01521-10
  36. Ivanova, L.B., Tomova, A., González-Acuña, D. (2014). Borrelia chilensis, a new member of the Borrelia burgdorferi sensu lato complex that extends the range of this genospecies in the Southern Hemisphere. Environmental Microbiology. Vol. 16, no. 4, pp. 1069–1080. Doi:10.1111/1462-2920.12310
  37. Margos, G., Piesman, J., Lane, R. S. (2014). Borrelia kurtenbachii sp. nov., a widely distributed member of the Borrelia burgdorferi sensu lato species complex in North America. International Journal of Systematic and Evolutionary Microbiology. Vol. 64, no. 1, pp. 128–130. Doi: 10.1099/ijs.0.054593-0
  38. Postic, D., Ras, N. M., Lane, R. S. (1998). Expanded Diversity among Californian Borrelia Isolates and Description of Borrelia bissettii sp. nov. (Formerly Borrelia Group DN127). Journal of Clinical Microbiology. Vol. 36, no. 12, pp. 3497–3504. Doi: 10.1128/JCM.36.12.3497-3504.1998
  39. Pritt, B.S., Mead, P.S., Johnson, D.K. H. (2016). Identification of a novel pathogenic Borrelia species causing Lyme borreliosis with unusually high spirochaetaemia: a descriptive study. The Lancet Infectious Diseases. Vol. 16, no. 5, pp. 556–564. Doi: 10.1016/S1473-3099(15)00464-8
  40. Johnson, T. L., Graham, C. B., Hojgaard, A. (2017). Isolation of the lyme disease spirochete borrelia mayonii from naturally infected rodents in Minnesota. Journal of Medical Entomology. Vol. 54, no. 4, pp. 1088–1092. Doi:10.1093/jme/ tjx062
  41. Verhaegh, D., Joosten, L. A. B., Oosting, M. (2017). The role of hostimmune cells andBorrelia burgdorferi antigens in the etiology of Lyme disease. European Cytokine Network. Vol. 28, no. 2, pp. 70–84. Doi: 10.1684/ecn.2017.0396
  42. Abdullah, S., Helps, C., Tasker, S. (2018). Prevalence and distribution ofBorrelia andBabesia speciesin ticksfeeding on dogs in the U.K. Medical and Veterinary Entomology. Vol. 32, no. 1, pp. 14–22. Doi: 10.1111/mve.12257
  43. Chemych, M., Lutai, I. (2020). Lyme disease. Modern issue condition (literature review). Eastern Ukrainian Medical Journal. Vol. 8, no. 2, pp. 230–241. Doi: 10.21272/ eumj.2020;8(2):230-241
  44. Shkilna, M. I., Andreychyn, M. A., Podobivsky, S. S. (2020). Infection of ticks collected from humans in Ukraine, by causative agents of some bacteriosis. Bukovinian Medical Herald. Vol. 24, no. 1 (93), pp. 195–201. Doi:10.24061/2413- 0737.XXIV.1.93.2020.26
  45. Mysterud, A., Stigum, V. M., Jaarsma, R. I. (2019). Genospecies of Borrelia burgdorferi sensu lato detected in 16 mammal species and questing ticks from northern Europe. Scientific Reports. Vol. 9, no. 1, pp. 1–8. Doi:10.1038/ s41598-019-41686-0
  46. Springer, A., Glass, A., Topp, A.K. (2020). Zoonotic Tick-Borne Pathogens in Temperate and Cold Regions of Europe – A Review on the Prevalence in Domestic Animals. Frontiersin Veterinary Science. Vol. 7, pp. 1–21. Doi:10.3389/ fvets.2020.604910
  47. Hodzic, E. (2015). Lyme borreliosis: Is there a preexisting (natural) variation in antimicrobial susceptibility among borrelia burgdorferi strains? Bosnian Journal of Basic Medical Sciences. Vol. 15, no. 3, pp. 1–13. Doi: 10.17305/ bjbms.2015.594
  48. Caimano, M. J., Drecktrah, D., Kung, F. (2016). Interaction of the Lyme disease spirochete with its tick vector. Cellular Microbiology. Vol. 18, no. 7, pp. 919–927. Doi:10.1111/cmi.12609
  49. Voloshyna, N. O., Voloshyn, O. G., Shevchenko, V. G. (2018). Pryrodno-vognyshhevi infekcii' za umov zminy klimatu [Natural focal infections under climate change]. Problemy ekologii' ta evoljucii' ekosystem v umovah transformovanogo seredovyshha: materialy naukovyh prac' II Mizhnarodnoi' naukovo-praktychnoi' konferencii') [Problems of ecology and evolution of ecosystems in the conditions of the transformed environment: materials of scientific works of the II International scientific and practical conference]. Chernihiv, pp. 48–51. Available at:
  50. Nebogatkin, I. V., Shulhan, A. M. (2020). Epidemiological and epizootic features of Lyme disease in 2019 in Ukraine. Actual Infectology. Vol. 8, no. 5–6, pp. 44–48. Doi:10.22141/2312-413x.8.5-6.2020.217959
  51. Alkishe, A. A., Peterson, A. T., Samy, A. M. (2017). Climate change influences on the potential geographic distribution of the disease vector tick Ixodesricinus. PLoS ONE. Vol. 12, no. 12, pp. 1–14. Doi: 10.1371/journal.pone.0189092
  52. Caminade, C., McIntyre, K. M., Jones, A. E. (2019). Impact of recent and future climate change on vector-borne diseases. Annals of the New York Academy of Sciences. Vol. 1436, no. 1, pp. 157–173. Doi:10.1111/ nyas.13950
  53. Voloshin, N.O., Voloshin, O.G. (2017). Ekologichni peredumovy poshyrennja emerdzhentnyh hvorob [Ecological preconditions for the spread of emergent diseases]. Naukovi zapysky Ternopil's'kogo nacional'nogo pedagogichnogo universytetu imeni Volodymyra Gnatjuka [Scientific notes of Ternopil National Pedagogical University named after Volodymyr Hnatyuk]. Series: Biology. Vol. 3 (70), pp. 120–123. Available at: bitstream/123456789/8191/1/Voloshyna%2c%20Voloshyn.pdf
  54. Mikheev, A.A.(2018). Migracii' ptahiv ta poshyrennja infekcijnyh zahvorjuvan' (ogljad literatury) [Migrations of birds and the spread of infectious diseases (literature review)]. World Science. Vol. 6, no. 6 (34), pp. 6–13. Doi:10.31435/ rsglobal_ws/ 12062018/5856
  55. Heylen, D., Fonville, M., Docters Van Leeuwen, A. (2017). Pathogen communities of songbird-derived ticks in Europe’s low countries. Parasites and Vectors. Vol. 10, no. 1, pp. 1–12. Doi:10.1186/s13071-017-2423-y
  56. Klimnyuk, S.I., Romanyuk, L.B., Kravets, N.Ya. (2017). Dejaki aspekty epidemiologii' ta diagnostyky Lajmboreliozu [Some aspects of epidemiology and diagnosis of Lyme borreliosis]. Naukovi zapysky Ternopil's'kogo nacional'nogo pedagogichnogo universytetu imeni Volodymyra Gnatjuka [Scientific notes of Ternopil National Pedagogical University named after Volodymyr Hnatyuk]. Series: Biology. no. 3 (70), pp. 147–153. Available at:https://
  57. Levytska, V. A., Mushinsky, A. B., Zubrikova, D. (2021). Detection of pathogens in ixodid ticks collected from animals and vegetation in five regions of Ukraine. Ticks and Tick-borne Diseases. Vol. 12, no. 1. Doi:10.1016/j. ttbdis.2020.101586
  58. Pantchev, N., Pluta, S., Huisinga, E. (2015). Tickborne Diseases (Borreliosis, Anaplasmosis, Babesiosis) in German and Austrian D ogs: Status quo and Review of Distribution, Transmission, Clinical Findings, Diagnostics and Prophylaxis. Parasitology Research. Vol. 114, no. 1, pp. 19–54. Doi:10.1007/s00436-015-4513-0
  59. Lin, Y.P., Diuk-Wasser, M.A., Stevenson, B. (2020). Complement Evasion Contributes to Lyme Borreliae– Host Associations. Trendsin Parasitology. Vol. 36, no. 7, pp. 634–645. Doi:10.1016/
  60. Adaszek, Ł., Gatellet, M., Mazurek, Ł. (2020). Myocarditis secondary to Borrelia infection in a dog: a case report. Annals of parasitology. Vol. 66, no. 2, pp. 255–257. Doi:10.17420/ap6602.263
  61. Prus, М., Shaydyuk, М. (2015). Diagnosis of Some Canine Vector-Borne Diseases in Ukraine. Scientific Journal of National University of Life and Environmental Sciences of Ukraine. Series: Veterinary medicine, quality and safety of products of stock-raising. pp. 268–273. Available at:https:// 48232227&btnI=1&hl=uk
  62. Lappin, M.R., Chandrashekar, R., Stillman, B. (2015). Evidence of Anaplasma phagocytophilum and Borrelia burgdorferi infection in cats after exposure to wild-caught adult Ixodes scapularis. Journal of Veterinary Diagnostic Investigation. Vol. 27, no. 4, pp. 522–525. Doi: 10.1177/1040638715593598
  63. Tsachev, I., Baymakova, M., Pantchev, N. (2019). Seroprevalence of Anaplasma phagocytophilum, Ehrlichia spp. And Borrelia burgdorferi infections in horses: first report from Northern Bulgaria – Short communication. ActaVeterinaria Hungarica. Vol. 67, no. 2, pp. 197–203. Doi: 10.1556/004.2019.021
  64. Divers, T. J. 92013). Equine Lyme Disease. Journal of Equine Veterinary Science. Vol. 33, no. 7, pp. 488–492. Doi: 10.1016/j.jevs.2013.03.187
  65. James, F. M., Engiles, J. B., Beech, J. (2010). Meningitis, cranial neuritis, and radiculoneuritis associated with Borrelia burgdorferi infectionin a horse. Journal of the American Veterinary Medical Association. Vol. 237, no. 10, pp. 1180–1185. Doi: 10.2460/javma.237.10.1180
  66. Imai, D. M., Barr, B. C., Daft, B. (2011). Lyme Neuroborreliosis in 2 Horses. Veterinary Pathology. Vol. 48, no. 6, pp. 1151–1157. Doi:10.1177/0300985811398246
  67. Johnstone, L. K., Engiles, J. B., Aceto, H. (2016). Retrospective Evaluation of Horses Diagnosed with Neuroborreliosis on Postmortem Examination: 16 Cases (2004-2015). Journal of veterinary internal medicine. Vol. 30, no. 4, pp. 1305–1312. Doi: 10.1111/jvim.14369
  68. Athanasiou, L.V., Spanou, V.M., Katsogiannou, E.G. (2021). Hematological Features in Sheep with IgG and IgM Antibodies against Borrelia burgdorferisensu lato. Pathogens. Vol. 10, no. 2, pp. 164. Doi: 10.3390/pathogens10020164
  69. Klaus, C., Diller, R., Hasse, E. E. (2017). Beitrag zur serologischen Diagnostik der Lyme-Borreliose beim Hund Contribution to the serodiagnosis of Lyme borreliosis in dogs Material und Methoden. Berliner und Münchener Tierärztliche Wochenschrift. Doi: 10.2376/0005-9366-17029
  70. Levytska, V. A., Mushynskyi, A. B. (2020). Diagnosis and treatmen to ftick-borne diseases of pets. Podilian Bulletin: agriculture, engineering, economics. Veterynary sciences. pp. 175–183. Doi:10.37406/2706-9052-2020-1-20
  71. Baneth, G., Nachum-Biala, Y., Halperin, T. (2016). Borrelia persica infection in dogs and cats: Clinical manifestations, clinicopathological findings and genetic characterization. Parasites and Vectors. Vol. 9, no. 1, pp. 1–10. Doi:10.1186/s13071-016-1530-5
  72. Wagner, B., Johnson, J., Garcia-Tapia, D. (2015). Comparison of effectiveness of cefovecin, doxycycline, and amoxicillin for the treatment of experimentally induced early Lyme borreliosis in dogs. BMC Veterinary Research. Vol. 11, no. 1, pp. 1–8. Doi: 10.1186/s12917-015-0475-9
  73. Baker, C.F., McCall, J.W., McCall, S.D. (2016). Ability of an oral formulation of afoxolaner to protect dogs from Borrelia burgdorferi infection transmitted by wild Ixodes scapulari sticks. Comparative Immunology, Microbiology and Infectious Diseases. Vol. 49, pp. 65–69. Doi:10.1016/j. cimid.2016.09.004
  74. Grosenbaugh, D. A., Rissi, D. R., Krimer, P. M. (2016). Demonstration of the ability of a canine Lyme vaccine to reduce the incidence of histological synovial lesions following experimentally-induced canine Lyme borreliosis. Veterinary Immunology and Immunopathology. Vol. 180, pp. 29–33. Doi:10.1016/j.vetimm.2016.08.014
PDF icon panteleenko_1_2021.pdf664.65 KB