You are here

Species composition of circulation microflora and its resistance to antibacterial drugs in the conditions of the impulse veterinary clinic of the city of Lviv

Effective infection surveillance and control provides a safe environment for staff, clients and animals in the veterinary clinic. This reduces the risk of nosocomial and zoonotic infections. In addition, there is a significant risk of developing antimicrobial resistance, which is associated with both reasonable and inappropriate use of antibacterial drugs for the treatment of humans and animals, food production and the ineffectiveness of measures to control the spread of infectious diseases. Therefore, microbiological monitoring is important for the assessment of the microbial composition of the veterinary institution and the timely detection of its dynamic changes and the quality of sanitary and disinfection measures. Flushes from different surfaces were taken for research. The first stage – in the process of the clinic; the second – after disinfection. The results of bacteriological examinations of washes from the surfaces of the premises of the veterinary clinic "Impulse" in Lviv (examination, hospital and operating room) showed the presence in the samples of Escherichia coli and Staphylococcus spp. An important component of the clinic's laboratory in the infection control system is to determine the sensitivity of microorganisms in the room to antibiotics and systematic monitoring of general trends in antibiotic resistance, which will control the formation of stationary strains. The results showed that Escherichia coli is sensitive to erythromycin, cephalexin, chloramphenicol, ceftriaxone, gentamicin, doxacycline, ciprofloxacin, norfloxacin and methicillin and is resistant to kanamycin, clarithromycin and amoxiclav. At the same time Staphylococcus spp. were resistant to erythromycin, chloramphenicol, kanamycin, clarithromycin, amoxiclav and norfloxacin to all other drugs – sensitive.

Key words: veterinary clinic, monitoring, infection control, prevention of stationary infections, resistance to antibiotics, disinfection.


  1. Drugka, E., Foka, A., Kutinas, K. K., Dzhelastopulu, E. (2016). Interspecies spread of Staphylococcus aureus clones among companion animals and human close contacts in a veterinary teaching hospital. A cross-sectional study in Greece. Preventive Veterinary Medicine. Vol. 126, pp. 190–198. DOI:10.1016/j.prevetmed.2016.02.004
  2. Stull, J. W., Scott Weese, J. (2015). Hospitalassociated infections in small animal practice.Vet Clin North Am Small Anim. Pract. Vol. 45(2), 217, 33 p. DOI:10.1016/j. cvsm.2014.11.009.Epub 2015 Jan 2
  3. Gibson, J.S., Morton, J.M., Cobbold, R.N. (2011). Risk factors for multidrug-resistant Escherichia coli rectal colonization of dogs on admission to a veterinary hospital. Epidemiol. Infect. Vol. 139, pp. 197–205.
  4. Pol S. Morli, Maykl D. Epli, Tomas E. Besser ta in. (2005). Antimicrobial Drug Usein Veterinary Medicine. J Vet Intern Med. Vol. 19, pp. 617–629. DOI:10.1111/j.1939-1676.2005.tb02739.x
  5. Huardabassi, L., Preskott, Dzh. (2015). Antimicrobial stewardship in small animal veterinary practice: from theory to practice.Veterinary Clinics of North America. Small Animal Practice. Vol. 45(2), pp. 361–376. DOI:10.1016/j. cvsm. 2014.11.005
  6. Vincze S., Brandenburg A.G., Espelage W. (2014). Risk factors for MRSA infection in companion animals: Results from a case-control study within Germany. International Journal of Medical Microbiology. Vol. 304, Issue 7, pp. 787–793. DOI:10.1016/j.ijmm.2014.07.007
  7. Hamilton, E., Kryuher, J. M., Shall, W. (2013). Acquisition and persistence of antimicrobial-resistant bacteria isolated from dogs and cats admitted to a veterinary teaching hospital. Vol. 243 (7), pp. 990–1000. DOI:10.2460/ javma. 243.7.990.
  8. Morrissi, I., Moyyert, H., Anno, de Jonh., Garch, F. E. (2016). Antimicrobial susceptibility monitoring of bacterial pathogens isolated from respiratory tract infections in dogs and cats across Europe: Com Path results. Vol. 191, pp. 44–51. DOI:10.1016/j.vetmic.2016.05.020.
  9. Smith, A., Wayne, A. S., Fellman, C. L., Marieke, H. (2019). Usage patterns of carbapenem antimicrobials in dogs and cats at a veterinary tertiary care hospital. J Vet Intern Med. Vol. 33, pp. 1677–1685. DOI:10.1111/jvim.15522
  10. Lappin, M.R., Blondeau, J., Boothe, D. (2017). Antimicrobial use Guidelines for Treatment of Respiratory Tract Disease in Dogs and Cats: Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Disease. Journal of Veterinary Internal Medicine. Vol. 31, Issue 2, pp. 279–294. DOI:10.1111/ jvim.14627
  11. Kraker, M.E., Davey, P.G., Grundmann, H. (2011). Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe. PLoS Medicine. Vol. 8(10):e1001104.
  12. Buriticá Gaviria, E. F., Echeverry Bonilla, D. F., Jaimes, J. A., Gómez, A. (2012). Integral antimicrobial control: a strategy against nosocomial infections in veterinary. Revista Colombianade Ciencia Animal. Vol. 5, no. 1, pp. 107–112.
  13. Garkavenko, T. A., Kozytska, T. G., Gorbatyuk, O. I., Kovalenko, V. L. (2019). Study of stability of polyantibioticorezistan radius S. aureus to disinfectives with different active substances. Scientific and Technical Bulletin оf State Scientific Research Control Institute of Veterinary Medical Products and Fodder Additives аnd Institute of Animal Biology. Vol. 20(2), pp. 183–193. DOI:10.36359/scivp. 2019- 20-2.24
  14. Kysera, Ya.V., Storchak, Yu.G., Gutyj, B.V., Bozhyk, L.Ya. (2019). Structural and functional features of the vermiform appendix at the tissue and cellular levels in rabbits after the introduction of immunobiological drugs. Ukrainian Journal of Ecology; Melitop. Vol. 9, Issue 2, pp. 217–226.
  15. Weese, J.S., Blondeau, J.M., Boothe, D. (2011). Antimicrobial use uidelines for treatment of urinary tract disease in dogs and cats: antimicrobial guidelines working group of the International Society for Companion Animal Infectious Diseases. J Vet Med Int., pp. 1–9.
  16. Hrenkova, T.A., Selʹkova, E.P., Husarova, M.P. (2014). Kontrol' za ustojchivost'ju mikroorganizmov k antibiotikam, antiseptikam i dezinficirujushhim sredstvam [Control over the resistance of microorganisms to antibiotics, antiseptics and disinfectants]. Jepidemiologija i vakcinoprofilaktika [Epidemiology and vaccines]. no. 1 (74), pp. 29–33.
  17. Rovedder, L., Lehmann, N.J., Furmanczuk, A. VISKIT – Standardization of the Surveillance of Nosocomial Infections in Veterinary Medicine/L. Rohwedder et al. Conference: 2020 IEEE International Conference on E-health Networking, Application & Services (HEALTHCOM). DOI:10.1109/HEALTHCOM 49281.2021. 9398969
  18. Vysotsʹkyy, A.Ye., Baranovsʹka, Z.N. (2002). Spravochnik po bakteriologicheskim metodam izyskanij v veterinarii [Reference book on bacteriological research methods in veterinary medicine]. Ed. Ministry of the Agricultural Republic of Belarus. 970 p. Available at:www.
  19. Hoult, Dzh., Krig, N., Snit, P. (1997). Opredelitel' bakterij Berdzhiv 2 tomah [Bergey's Keys to Bacteria in 2 volumes]. M.: Mir, 444 p.
  20. Vikesland, P., Garner, E., Gupta, S., Kang, S., Maile-Moskowitz, A., Zhu, N. (2019). Differential drivers of antimicrobial resistance across the world. Acc. Chem. Res. Vol. 52, pp. 916–924. DOI:10.1021/acs.accounts.8b00643– DOI– PubMed
PDF icon kisera_2_2021.pdf1.14 MB