You are here

State of protein and mineral exchange in broiler-chickens for the use of Zinc and Mangane chelates

The results of the application of a complex of Zinc and Manganese chelates to protein, macro- and micro-mineral exchanges in the body of broiler chickens of the Cobb 500 cross-breed are presented. The administration of Zn and Mn chelates in a dose of 0,2 ml/l for chicken broilers of 23 days of age (1st experimental group) during 14 days influenced the increase in the total protein content to 35,3±0,8 g/l, which is 8 % higher compared with the control – 32,5±0,7 g/l (p<0,01 ) The concentration of total Calcium in serum of broiler chickens 37-day-old (end of trial) was higher in the first experimental group by 7,3 % (2,05±0,06 mmol/l) compared to control – 1,9±0,03 mmol/l. In the second group, where chelates were administered in a dose of 0,4 ml/l of water, the Calcium content was 2,0±0,02 mmol/l, which is 5 % more than the control group. The two-week application of Zn and Mn chelates also led to an increase in the level of inorganic Phosphorus in the serum of the first group to 2,6±0,12 mmol/l (+ 11,5 %) compared with the control group. After administration of chelates Zn and Mn at doses of 0,2 ml/l water, the Zinc content was higher by 4,3% (23,5±0,2 μmol/l) compared to control – 22,5±0,34 μmol/l (p<0,01). In the second group, where the dose of chelates was 0,4 ml/l, the concentration of Zinc was 23,6±0,16 μmol/l, which is more than 4,6 % for control (p<0,01). At the end of the study, the content of Manganese in serum of broiler chickens in the first group was 1,9±0,07 μmol/l (p<0,05), which is 10,4% higher compared with the control – 1,7±0,06 μmol/l (3rd sampling). The level of this element in the second group was 2,0±0,08 μmol/l (p<0,01), which is higher by 16,7 % relative to the control. At the end of the experiment, the coupon concentration in the first and second experimental groups was 12,6 and 9,3 % higher, compared with control, 7,0±0,37 μmol/l. In turn, the serum Ferrum content of the first group was greater by 9,3 % (19,3±0,69 μmol/l), and the second by 6,7 % (18,8±0,47 μmol/l) compared to the bird of the control group.

Key words: chicken broilers, chelates, Zinc, Manganese, Cuprom, Ferrum, metabolism.

 

1. Mottet, A., Tempio, G. (2017). Global poultry production: current state and future outlook and challenges. World’s Poultry Science Journal. Vol. 73, no. 02, pp. 245–256. Available at:https://doi.org/ 10.1017/S0043933917000071.

2. Mel'nik, V.V. (2017) Pidsumky roboty u 2016 roci: pogoliv’ja ptyci ta vyrobnyctvo jajec' i m’jasa v Ukrai'ni [Performance in 2016: Poultry and Egg and Meat Production in Ukraine]. Suchasne ptahivnyctvo [Modern poultry farming].  no. 01-02 (170-171), pp. 3–6. Available at:http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN= LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=Sps_2017_1-2_4

3. Mel'nyk, A.Ju. (2015). Analiz i perspektyvy galuzi ptahivnyctva ukrai'ny, poshyrennja ta klasyfikacija metabolichnyh hvorob sil's'kogospodars'koi' ptyci [Analysis and prospects of the poultry industry of Ukraine, distribution and classification of metabolic diseases of farm poultry]. Naukovyj visnyk veterynarnoi' medycyny [Scientific Bulletin of Veterinary Medicine]. no. 2, pp. 67–73. Available at:http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN= LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=nvvm_2015_2_14

4. Medvid, S.M. (2018) Vplyv akvacytratu mikroelementiv na pokaznyky nespecyfichnoi' rezystentnosti ta klitynnyj imunitet u kurchat-brojleriv [Effect of trace elements aquacitrate on non-specific resistance and cellular immunity in broiler chickens]. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Vol. 20(84), pp. 33–38. Available at: https://doi.org/10.15421/nvlvet8406

5. Gazijev, B.M., Saprkin, V.O., Ionov, I.A. (2013). Efektyvnist' zgodovuvannja riznyh doz helatnoi' formy zaliza suporosnym i laktujuchym svynomatkam [Feeding efficiency of different doses of chelated iron to pregnant and lactating sows]. Visnyk agrarnoi' nauky [Bulletin of agrarian science]. no. 2, pp. 26–30.

6. Petrovič, V., Kushev, J., Nollet, L., Kováč, G. (2011). Effect of dietary supplementation of trace elements on blood chemistry and selected immunological indices depending on the age of broiler chickens.  Acta Veterinaria Brno. Vol. 80, no. 1, pp. 57–64. Available at:  https://doi.org/10.2754/avb201180010057.

7. Tufarelli, V., Laudadio, V. (2017). Manganese and its role in poultry nutrition: an overview. Journal of Experimental Biology and Agricultural Sciences. Vol. 5, no. 6, pp. 749–754. Available at:  https://doi.org/10.18006/2017.5(6).749.754.

8. Burdone, A. (2015). Helaty mikrojelementov: uspeshnyj otkorm i pererabotka [Trace element chelates: successful fattening and processing]. Zhivotnovodstvo Rossii [Livestock of Russia]. no. 6, pp. 38–40. Available at: http://www.zzr.ru/sites/ default/files/zzr-2015-07-013.pdf

9. Koltun, Je.M., Katyns'kyj, Ju.M. (2011). Profilaktyka i diagnostyka mikroelementoziv Cynku, Jodu u kurchat brojleriv [Prevention and diagnosis of trace elements Zinc, Iodine in broiler chickens]. Naukovyj visnyk LNUVMBT imeni S.Z. G'zhyc'kogo [Scientific Messenger of Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Lviv]. Vol. 13, no. 4 (50),  pp. 92–99. Available at: http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiir-bis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=nvlnu_2011_13_4(2)__20

10. Organicheskie mikrojelementy obespechivajut luchshuju strukturu i celostnost' skeleta [Organic trace elements provide better structure and integrity of the skeleton]. Efektivne ptahіvnictvo [Effective poultry farming]. 2011, no. 6 (78), pp. 36–39.

11. Yenice, E., Mızrak, C., Gültekin, M. (2015). Effects of organic and inorganic forms of manganese, zinc, copper, and chromium on bioavailability of these minerals and calcium in late-phase laying hens. Biological Trace Element Research. Vol. 167, no. 2, pp. 300–307. Available at: https://doi.org/10.1007/s12011-015-0313-8

12. Olukosi, O.A., Kuijk van, S., Han, Y. (2018). Copper and zinc sources and levels of zinc inclusion influence growth performance, tissue trace mineral content, and carcass yield of broiler chickens.  Poultry Science. Vol. 97, no. 11, pp. 3891–3898. Available at:  https://doi.org/10.3382/ps/pey247.

13. Marchenkov, F.S., Storozhuk, T.V. (2010). Helatni mikroelementy – vazhlyvyj komponent kombikormiv ta premiksiv [Chelated trace elements are an important component of compound feeds and premixes]. Zernovi produkty i kombikormy [Cereal products and compound feeds]. no. 1, pp. 37–38.

14. Vieira, S.L. (2008). Chelated minerals for poultry. Brazilian Journal of Poultry Science.  Vol. 10, no. 4, pp. 73–79. Available at: https://doi.org/10.1590/S1516-635X2008000200001.

15. Kochetkova, N.A., Yakovleva, E. G., Shaposhnikov, A.A. (2016). Chelate complexes of malic or citric acids with iron, manganese and zinc as a biologically active supplement for broiler chicken diet. Research result Pharmacology and Clinical Pharmacology. Vol. 2, no. 4, pp. 87–90. Available at: https://doi.org/10.18413/2500-235X-2016-2-4-87-90.

16. Stanaćev, V.S., Milošević, N., Stanaćev, V.Ž. (2014). Chelating forms of microelements in poultry nutrition. World’s Poultry Science Journal. Vol. 70, no. 01, pp. 105–112. Available at:   https://doi.org/10.1017/S0043933914000099

17. Landver, B. (2018). Optimizacija potrebnosti v mikrojelementah s pomoshh'ju glicinatov [Optimization of micronutrient demand with glycinates]. Zhivotnovodstvo Rossii [Animal husbandry of Russia]. no. 2, pp. 14–16.  Available at: http://www.zzr.ru/sites/default/files/zzr-2018-02-003.pdf

18. Marco, M.De., Zoon, M.V., Margetyal, C. (2017). Dietary administration of glycine complexed trace minerals can improve performance and slaughter yield in broilers and reduces mineral excretion. Animal Feed Science and Technology. Vol. 232, no. August, pp. 182–189. Available at: https://doi.org/ 10.1016/j.anifeedsci.2017.08.016.

19. Min, Y.N., Liu, F.X., Qi, X. (2019). Effects of organic zinc on tibia quality, mineral deposit, and metallothionein expression level of aged hens.  Poultry Science. Vol. 98, no. 1, pp. 366–372. Available at: https://doi.org/ 10.3382/ps/pey386.

20. Kwiecień, M., Winiarska-Mieczan, A., Milczarek, A., Klebaniuk, R. (2017). Biological response of broiler chickens to decreasing dietary inclusion levels of zinc glycine chelate. Biological Trace Element Research. Vol. 175, no. 1, pp. 204–213. Available at: https://doi.org/10.1007/s12011-016-0743-y.

21. Feng, J., Ma, Q.V., Niu, H.H. (2010). Effects of zinc glycine chelate on growth, hematological, and immunological characteristics in broilers. Biological Trace Element Research. Vol. 133, no. 2, pp. 203–211. Available at: https://doi.org/10.1007/s12011-009-8431-9.

22. Shackih, E. V. (2013) Ispol'zovanie biopleksa marganca v kormlenii cypljat-brojlerov [The use of manganese bioplex in feeding broiler chickens]. Agrarnyj vestnik Urala [Bulletin of the Urals]. Vol. 3, no. 109, pp. 33–35.  Available at: https://elibrary.ru/item.asp?id=20264485.

23. Sunder, G.S., Kumar, C.V., Panda, A.K. (2013). Effect of supplemental organic zn and mn on broiler performance, bone measures, tissue mineral uptake and immune response at 35 days of age. Current Research in Poultry Science. Vol. 3, no. 1, pp. 1–11. Available at: https://doi.org/10.3923/crpsaj.2013.1.11.

24. Zhao, J., Shirley, R.B., Vazquez-Anon, M. (2010). Effects of chelated trace minerals on growth performance, breast meat yield, and footpad health in commercial meat broilers. Journal of Applied Poultry Research. Vol. 19, no. 4, pp. 365–372. Available at: https://doi.org/10.3382/japr.2009-00020.

25. Strihy, M., Il'chenka, M. (2017). Innovacijni rozrobky universytetiv i naukovyh ustanov MON Ukrai'ny [Innovative development of universities and scientific institutions of the Ministry of Education and Science of Ukraine]. Kyiv, Institute of Gifted Child of NAPS of Ukraine, 278 p. Available at: https://mon.gov.ua/storage/app/media/news/%D0%9D%D0%BE% D0%B2%D0%B8%D0%BD%D0%B8/2019/01/28/innovations2018-vse.pdf

26. Kelly, L.M., Alworth, L.C. (2013). Techniques for collecting blood from the domestic chicken.  Lab Animal. Vol. 42, no. 10, pp. 359–361. Available at:https://doi.org/ 10.1038/laban.394.

27. Onishhenko, G.G., Zajceva, N.V., Ulanova, T.S. (2011). Kontrol' soderzhanija himicheskih soedinenij i jelementov v biologicheskih sredah: rukovodstvo [Control of the content of chemical compounds and elements in biological media: a guide]. Perm: Onishchenko G.G. 520 p.

28. Borisevich, V. B., Borysevych, B.V., Kaplunenko, V.G. (2009).  Vpliv nanochastinok Cu, Zn, Mg, Co na produktivnіst' brojlerіv [Effect of Cu, Zn, Mg, Co Nanoparticles on Broiler Performance].  Efektivne ptahіvnictvo [Effective poultry farming]. no. 1 (49), pp. 28–31.

AttachmentSize
PDF icon sakara_1_2019.pdf8.41 MB