You are here

Toxicological characteristics of the probiotic drug Bioseven

Ukraine's food security is determined by the production of a sufficient number of high-quality, ecologically harmless, complete food products of animal origin. Bacterial preparations based on live microbial cultures - pre and probiotics - have become widely used in most countries of the world, including Ukraine, in the technological process of growing agricultural animals, especially poultry. The purpose of the work was to conduct a toxicological characterization of the probiotic preparation Bioseven. The following research methods were used to obtain scientific information: zootechnical, zoohygienic, morphological, biochemical, statistical. The research was conducted on white Wistar rats of both sexes. Healthy animals with the ap propriate body weight were used in the experiments. Fluctuations in body weight in the respective groups did not exceed ±10.0 %. Animals were kept in groups in cages in compliance with sanitary and hygienic requirements. It was established that when Bioseven was administered to white rats in doses of 1000, 2500, 5000 mg/kg, all animals remained alive and clinically healthy: the behavior of the animals was typical for this species of rodents. Activity, grooming, breathing rate, feed and water consumption in all groups did not differ significantly and were within physiological norms, no signs of intoxication were registered. Under the conditions of intragastric administration of the drug Bioseven LD 50 for white mice and rats is more than 5000 mg/kg of body weight. The use of the drug Bio-seven in the above doses for 30 days leads to kidney and liver damage in the animals of the third experimental group (10-fold dose). The application of the drug Bioseven to the animals of the two experimental groups did not show probable changes in the morphological and biochemical indicators of the blood compared to the control. The level of endogenous intoxication of the body of white rats (SZE) did not change between experimental animals. Thus, the toxicological characteristics of the probiotic preparation Bioseven indicate the absence of a suppressive effect of the probiotic Bioseven on the metabolic processes of the body of laboratory animals.

Key words: probiotic, toxicological characteristics, suppressive effect, biochemical, ecologically harmless, complete, food products, animal origin, food safety, consumer.

  1. Pro derzhavnyj kontrol' za dotrymannjam zakonodavstva pro harchovi produkty, kormy, pobichni produkty tvarynnogo pohodzhennja, zdorov’ja ta blagopoluchchja tvaryn: Zakon Ukrai'ny vid 18.05. 2017. № 2042-VIII. [On state control over compliance with the legislation on food products, feed, animal by-products, animal health and welfare: Law of Ukraine dated 18.05. 2017. No. 2042-VIII.]. (in Ukraine).
  2. Pro osnovni pryncypy ta vymogy do bezpechnosti ta jakosti harchovyh produktiv: Zakon Ukrai'ny vid 24.10.2002. №771/97 VR (23.12.1997) ta №191-U. V redakcii' Zakonu № 2042-VIII vid 04.04.2018. [On basic principles and requirements for the safety and quality of food products: Law of Ukraine dated October 24, 2002. No. 771/97 VR (December 23, 1997) and No. 191-U. As amended by Law No. 2042-VIII dated 04.04.2018.]. (in Ukraine).
  3. On the Protection of Animals from Cruelty: Law of Ukraine dated 21.02. 2006. № 3447-IV. (in Ukraine).
  4. Informacijno-analitychnyj portal Mizhnarodnoi' prodovol'choi' ta sil's'kogospodars'koi' organizacii' FAO [Information and analytical portal of the International Food and Agricultural Organization of the FAO]. Available at:http:// (in Ukraine).
  5. Zinchenko, E.V. Panin, A.N., Panin, V.A. (2017). Praktychni aspekty zastosuvannja probiotykiv u tvarynnyctvi [Practical aspects of the use of probiotics in animal husbandry]. Veterynarnyj konsul'tant [Veterinary consultant]. Odesa, no. 3, pp. 12-14. (in Ukraine).
  6. Kotsyumbas, I.Ya., Malik, O.H., Paterega, I.P. (2006). Preclinical studies of veterinary medicinal products / ed. and I. Kotsyumbas [Doklinichni doslidzhennja veterynarnyh likars'kyh zasobiv / za red. I.Ja. Kocjumbasa]. Lviv: Triada Plus, 360 р. (in Ukraine).
  7. Kosenko, M.V., Malik, O.G., Kotsyumbas, I.Ya., Paterega, I.P., Chura, D.O. (1997). Toksykologichnyj kontrol' novyh zasobiv zahystu tvaryn: metodychni rekomendacii' [Toxicological control of new animal protection products: methodological recommendations]. Kyiv, 34 p. (in Ukraine).
  8. SOU 85.2-37-736:2011 Preparaty veterynarni. Vyznachannja gostroi' toksychnosti [SOU 85.2-37- 736:2011 Veterinary drugs. Determination of acute toxicity]. K: Ministry of Agrarian Policy, 2011, 16 p. (in Ukraine).
  9. Nitsenko, V.S. Stan ta perspektyvy rozvytku rynku produkcii' ptahivnyctva v Ukrai'ni [State and prospects of development of the market of poultry products in Ukraine]. Available at: sbornik/vestnik125/30.pdf. (in Ukraine).
  10. Malik, M.I., Panin, A.M. (2017). Veterynarni probiotychni preparaty [Veterinary probiotic preparations]. Veterynarija [Veterinaria]. no. 1, рр. 46-51. (in Ukraine).
  11. Yakubchak, O.M., Taran, T.V., Midyk, S.V., Afonina, A.O. (2023). Doslidzhennja laboratornyh tvaryn za zastosuvannja vody, zbagachenoi' probiotykamy Nacional'nyj universytet bioresursiv i pryrodokorystuvannja Ukrai'ny Ekologichni ta gigijenichni problemy sfery zhyttjedijal'nosti ljudyny: zbirka materialiv naukovo-praktychnoi' konferencii' z mizhnarodnoju uchastju. 15 bereznja 2023 r. [Research of laboratory animals using water enriched with probiotics National University of Bioresources and Nature Management of Ukraine Ecological and hygienic problems of the sphere of human life: collection of materials of the scientific and practical conference with international participation March 15. 2023]. рр. 218-221 (in Ukraine).
  12. Alam, S., Sadiqi, S., Sabi, M. (2022). Bacillus species; a potential source of anti-SARS-CoV-2 main protease inhibitors. J. Biomol. Struct. Dyn., 40 (13), рр. 5748–5758.
  13. Bouallegue, A., Casillo, A., Chaari, F. (2020). Levan from a new isolated Bacillus subtilis AF17: purification, structural analysis and antioxidant activities. Int. J. Biol. Macromol., 144, рр. 316–324.
  14. Schofield, B.J., Lachne, N., Le, O.T., McNeill, D.M., Dart, P., Ouwerkerk, D., Hugenholtz, P., Klieve, A.V. (2018). Beneficial changes in rumen bacterial community profile in sheep and dairy calves as a result of feeding the probiotic Bacillus amyloliquefaciens H57. J Appl Microbiol., 124 (3), рр. 855-866. DOI:10.1111/jam.13688. Epub 2018 Feb 6.
  15. Daniel, L.J. (2018). Molybdenum toxicity in lactobacillus. Biol. Med. no. 83, 487 р.
  16. Du, R., Jiao, S., Dai, Y., An, J., Lv, J., Yan, X., Wang, J., Han, B. (2018). Probiotic Bacillus amyloliquefaciens C-1 Improves Growth Performance, Stimulates GH/IGF-1, and Regulates the Gut Microbiota of Growth-Retarded Beef Calves. Front Microbiol. 9:2006. DOI:10.3389/fmicb.2018.02006.eCollection2018.
  17. Fernández, S., Fraga, M., Silveyra, E., Trombert, A.N., Rabaza, A., Pla, M., Zunino, P. (2018). Probiotic properties of native Lactobacillus spp. strains for dairy calves. Benef Microbes. 9 (4), рр. 613-624. DOI:10.3920/BM2017.0131. Epub 2018 Apr 10.
  18. Sojan, J.M., Raman, R., Muller, M. (2022). Probiotics Enhance Bone Growth and Rescue BMP Inhibition: New Transgenic Zebrafish Lines to Study Bone Health. Int. J. Mol. Sci., 23 (9), 4748 р.
  19. Sharma, A.N., Kumar, S., Tyagi, A.K. (2018). Effects of mannan-oligosaccharides and Lactobacillus acidophilus supplementation on growth performance, nutrient utilization and faecal characteristics in Murrah buffalo calves. J Anim Physiol Anim Nutr (Berl), 10 (3), рр. 679-689. DOI:10.1111/jpn.12878. Epub 2018 Feb 28.
  20. Sathishkumar, R., Kannan, R., Jinendiran, S. (2021). Production and characterization of exopolys accharide from the sponge-associated Bacillus subtilis MKU SERB2 and its in-vitro biological properties. Int. J. Biol. Macromol., 166, рр. 1471–1479.
  21. Vazquez-Mendoza, P., Elghandour, M.M.M., Alaba, P.A., Sánchez-Aparicio, P., Alonso-Fresán, M.U., Barbabosa-Pliego, A. (2018). Antimicrobial and bactericidal impacts of Bacillus amyloliquefaciens, CECT 5940 on fecal shedding of pathogenic bacteria in dairy calves and adult dogs. Salem AZM. Microb Pathog. 114, рр. 458-463. DOI:10.1016/j.micpath.2017.11.040. Epub 2017 Nov 24.
  22. National Advisory Committee on Microbiological Criteria for Foods/ NACMCF. us. Hazard Analysis System and Critical Control Points, 1992 NACMCF.
  23. Hancock, J.T., Salisbury, V., Ovejero-Boglione, M.C. (2018). Antimicrobial properties of milk: dependence on presence of xanthine oxidase and nitrite. Antimicrob. Agents Chemother. Vol. 46, рр. 3308–3310.
  24. MacGillivray, P.C., Finlay, H.V.L., Binns, T.B. (2019). Use of lactulose to create a preponderance of lactobacilli in the intestine of bottle-fed infants. Scott Med J., 4, pp. 182-189.
  25. Maldonado, N.C., Chiaraviglio, J., Bru, E., De Chazal, L., Santos, V., Nader-Macías. (2018). Effect of Milk Fermented with Lactic Acid Bacteria on Diarrheal Incidence, Growth Performance and Microbiological and Blood Profiles of Newborn Dairy Calves. MEF. Probiotics Antimicrob Proteins. 10 (4), рр. 668-676. DOI:10. 1007/s12602-017-9308-4.
  26. Cantor, M.C., Stanton, A.L., Combs, D.K., Costa, J.C. (2019). Effect of milk feeding strategy and lactic acid probiotics on growth and behavior of dairycalves fed using an automated feeding system1. J Anim Sci., 97 (3), рр. 1052-1065. DOI:10. 1093/jas/skz034.
  27. Rhayat, L., Maresca, M., Nicoletti, C. (2019). Effect of Bacillus subtilis Strains on Intestinal Barrier Function and Inflammatory Response. Front. Immunol., 10, 564 р.
  28. Cristofori, F., Dargenio, V.N., Dargenio, C. (2021). Anti-Inflammatory and Immunomodulatory Effects of Probiotics in Gut Inflammation: A Door to the Body. Front. Immunol., 12:578386.
  29. Safronova, L.S., Skorochod, I.A., Ilyash, V.M. (2021). Antioxidant and Antiradical Properties of Probiotic Strains Bacillus amyloliquefaciens ssp. plantarum. Probiotics Antimicrob. Proteins, 13 (6), рр. 1585–1597.
  30. Padhi, S., Sanjukta, S., Chourasia, R. (2021). A Multifunctional Peptide From Bacillus Fermented Soybean for Effective Inhibition of SARS-CoV-2 S1 Receptor Binding Domain and Modulation of Toll Like Receptor 4: A Molecular Docking Study. Front. Mol. Biosci., 8:636647.
  31. Yohe, T.T., Enger, B.D., Wang, L., Tucker, H.L.M, Ceh, C.A., Parsons, C.L.M., Yu, Z., Daniels, K.M. (2018). Short communication: Does early-life administration of a Megasphaera elsdenii probiotic affect longterm establishment of the organism in the rumen and alter rumen metabolism in the dairy calf ? J Dairy Sci., 101 (2), рр. 1747-1751. DOI:10.3168/jds.2017-12551. Epub 2017 № 23.
  32. Yousef, R.H., Baothman, O., Abdulaal, W.H. (2020). Potential antitumor activity of exopolys accharide produced from date seed powder as a carbon source for Bacillus subtilis. J. Microbiol. Methods., 170:105853.
  33. Zhang, L., Yi, H. (2022). An exopolysaccharide from Bacillus subtilis alleviates airway inflammatory responses via the NF-κB and STAT6 pathways in asthmatic mice. Biosci Rep., 42 (1):BSR20212461.
  34. Togaibaev, A.A., Kurkuzkin, A.B., Rikun, I.B., Karibdzhanova, R.M. (1988). Мethod of diagnosing endogenous intoxication. Laboratory work. no. 9, рр. 22-24.
PDF icon dyuba_1_2023.pdf514.41 KB