Ви є тут
Патогенетичні механізми взаємодії вірусу АЧС з імунною системою та їх значення для епізоотології й біобезпеки тваринництва
Африканська чума свиней (ASF) – висококонтагіозна транскордонна вірусна хвороба, що завдає значних економічних збитків і становить загрозу глобальній біобезпеці. Збудник, вірус ASFV (родина Asfarviridae), є складним ДНК-вмісним вірусом із цитоплазматичною реплікацією, який виявляє виражений тропізм до клітин моноцитарно-макрофагальної лінії. Метою цього огляду є системний аналіз патогенетичних механізмів ASFV-інфекції з акцентом на імуномодулюючі стратегії вірусу та їхній вплив на формування сучасних підходів до епізоотологічного контролю. Сучасні дослідження підтверджують, що первинна реплікація ASFV супроводжується глибоким пригніченням вродженого імунітету через блокаду Toll-подібних рецепторів та інтерферон-регульованих генів (ISG), що сприяє необмеже ній вірусній реплікації. Ключовою ланкою патогенезу є індукція цитокінового шторму (TNF-α, IL-1β, IL-6) на тлі системної імуносупресії, що призводить до судинної дисфункції, активації ДВЗ-синдрому та геморагічних проявів. Вірус уникає адаптивного імунітету через масовий апоптоз Т- і B-лімфоцитів, порушення антиген-презентації (зниження MHC-II) та продукцію низькоафінних антитіл, нездатних до нейтралізації вірусу. Окремі молекулярні механізми включають блокаду IFN-γ сигналізації через деградацію білками MGF360/505, інгібування NF-κB шляху, а також порушення функції комплементу через білки pEP153R та CD2v. У термінальній стадії розвивається гостра поліорганна недостатність із характерними ураженнями селезінки (гіперплазія пульпи, некрози), печінки (дегенерація гепатоцитів), нирок (некротичний гломерулонефрит) та серця (міокардіальні геморагії). Розуміння цих механізмів є основою для розробки цілеспрямованих заходів біобезпеки, включаючи моніторинг мутацій у генах MGF360/505 та CD2v, вдосконалення дезінфекційних протоколів з урахуванням стійкості ASFV, а також створення рекомбінантних вакцин на основі делеційних штамів. Інтеграція патогенетичних даних у стратегії епізоотологічного контролю дозволить розробити диференційовані підходи для уражених регіонів із урахуванням молекулярно-генетичних особливостей циркулюючих ізолятів ASFV.
Ключові слова: африканська чума свиней, African swine fever virus (ASFV), патогенез, імунна дисрегуляція, цитокіновий шторм, біобезпека та біозахист, епізоотологія.
- Afayibo, D.J.A., Yang, J., Hao, R., Zhang, Z., Sun, H., Luo, J., Ren, Q., Tadele, B.A., Guan, G., Niu, Q., Yin, H. (2025). Protein profile and protein interaction network analysis of Ornithodoros moubata during African swine fever virus infection, Research Square, Preprint (Version 1). DOI:10.21203/rs.3.rs-6443758/v1
- Afe, A.E., Shen, Z.J., Guo, X., Zhou, R., Li, K. (2023). African swine fever virus interaction with host innate immune factors. Viruses, 15 (6), 1220 p. DOI:10.3390/v15061220
- Aicher, S.M., Monaghan, P., Netherton, C.L., Hawes, P.C. (2021). Unpicking the secrets of African swine fever viral replication sites. Viruses, 13 (1), 77 p. DOI:10.3390/v13010077
- Alejo, A., García-Castey, M., Guerra, M., Hernáez, B., Martín, V., Matamoros, T., Andrés, G. (2023). African swine fever virus transmembrane protein pEP84R guides core assembly. PLoS Pathogens, 19 (1). DOI:10.1371/journal.ppat.1011136
- Arzumanyan, H., Hakobyan, S., Avagyan, H., Izmailyan, R., Nersisyan, N., Karalyan, Z. (2021). Possibility of long-term survival of African swine fever virus in natural conditions. Veterinary World, 14 (4), 854 p. DOI:10.14202/vetworld.2021.854-859
- Avagyan, H., Hakobyan, S., Baghdasaryan, B., Arzumanyan, H., Poghosyan, A., Bayramyan, N., Semerjyan, A., Sargsyan, M., Voskanyan, H., Vardanyan, T., Karalyan, N., Hakobyan, L., Abroyan, L., Avetisyan, A., Karalova, E., Semerjyan, Z., & Karalyan, Z. (2024). Pathology and clinics of naturally occurring low-virulence variants of African swine fever emerged in domestic pigs in the South Caucasus. Pathogens. 13 (2), 130 p. DOI:10.3390/pathogens130 20130
- Ayanwale, A., Trapp, S., Guabiraba, R., Ca ballero, I., Roesch, F. (2022). New insights in the interplay between African swine fever virus and innate immunity and its impact on viral pathoge nicity. Frontiers in microbiology, 13. DOI:10.3389/fmicb.2022.958307
- Bellini, S., Rutili, D., Guberti, V. (2016). Preventive measures aimed at minimizing the risk of African swine fever virus spread in pig farming systems. Acta veterinaria Scandinavica. 58 (1), 82 p. DOI:10.1186/s13028-016-0264-x
- Bezymennyi, M., Tarasov, O., Kyivska, G.V., Mezhenska, N. A., Mandyhra, S., Kovalenko, G., Sushko, M., Hudz, N., Skorokhod, S.V., Datsenko, R., Muzykina, L., Milton, E., Sapachova, M.A., Nychyk, S., Halka, I., Frant, M., Huettmann, F., Drown, D.M., Gerilovych, A., Mezhenskyi A.A., Bortz E., Lange, C.E., Lange, C.E. (2023). Epidemiological characterization of African swine fever dynamics in Ukraine, 2012–2023. Vaccines. 11 (7), 1145 p. DOI:10.3390/vaccines11071145
- Bisimwa, P.N., Ongus, J.R., Tonui, R., Bisimwa, E.B., Steina, L. (2024). Resistance to African swine fever virus among African domestic pigs appears to be associated with a distinct polymorphic signature in the RelA gene and upregulation of RelA transcription. Virology Journal, 21 (93). DOI:10.1186/s12985-024-02351-9
- Blázquez, E., Rodríguez, C., Ródenas, J., Rosell, R., Segalés, J., Pujols, J., Polo, J. (2021). Effect of spray-drying and ultraviolet C radiation as biosafety steps for CSFV and ASFV inactivation in porcine plasma. PLoS One, 16 (4). DOI:10.1371/journal.pone.0249935
- Blome, S., Schäfer, M., Ishchenko, L., Müller, C., Fischer, M., Carrau, T., Liu, L., Emmoth, E., Stahl, K., Mader, A., Wendland, M., Wagner, B., Kowalczyk, J., Mateus-Vargas, R., Pieper, R. (2024). Survival of African swine fever virus in feed, bedding materials and mechanical vectors and their potential role in virus transmission. EFSA Supporting Publications, 21 (4). DOI:10.2903/sp.efsa.2024.EN-8776
- Brown, V.R., Miller, R.S., McKee, S.C., Ernst, K.H., Didero, N.M., Maison, R.M., Grady, M.J., Shwiff, S.A. (2021). Risks of introduction and eco nomic consequences associated with African swine fever, classical swine fever and foot‐and‐mouth disease: A review of the literature. Transboundary and emerging diseases, 68 (4), pp. 1910–1965. DOI:10.1111/tbed.13919
- Chen, Y., Ni, J., Wang, C., Zhai, X., Luo, T., Li, Y. P., Wei, Y., Liu, Y. (2024). The proteomic analysis uncovers the cellular responses to the African swine fever virus membrane proteins p54, p17, and pB117L. Microbes and Infection, 26 (5–6). DOI:10.1016/j.micinf.2024.105 348
- Cho, K.H., Hong, S.K., Kim, D. Y., Sohn, H.J., Yoo, D.S., Kang, H.E., Kim, Y.H. (2024). Disease course of korean african swine fever virus in domestic pigs exposed intraorally, intranasally, intramuscularly, and by direct contact with infected pigs. Viruses, 16 (3), 433 p. DOI:10.3390/v16030433
- Cochran, H.J., Bosco-Lauth, A.M., Garry, F.B., Roman-Muniz, I.N., Martin, J.N. (2023). African swine fever: a review of current disease management strategies and risks associated with exhibition swine in the United States. Animals, 13 (23), 3713 p. DOI:10.3390/ani13233713,
- Coelho, I.M.P., Paiva, M.T., da Costa, A.J.A., Nicolino, R.R. (2025). African Swine Fever: Spread and seasonal patterns worldwide. Preventive Veterinary Medicine, 235. DOI:10.1016/j.prevetmed.2024.106401
- Cuevas-Romero, J.S., Zavala-Ocampo, P.L., Pina-Pedrero, S., Ganges, L., Muñoz-Aguilera, A., García-Cambrón, J.B., Rodriguez, F., Ambagala, A., Cerriteño-Sánchez, J.L. (2025). Cloning and Expression of a Truncated Form of the p72 Protein of the African Swine Fever Virus (ASFV) for Application in an Efficient Indirect ELISA System. Pathogens, 14 (6), 542 p. DOI:10.3390/pathogens14060542,
- Cui, S., Wang, Y., Chen, S., Fang, L., Jiang, Y., Pang, Z., Jiang, Y., Guo, X., Zhu, H., Jia, H. (2024). African swine fever virus E120R inhibited cGAS‐STING‐mediated IFN‐β and NF‐κB pathways. Animal Research and One Health, 2 (1), pp. 39–49. DOI:10.1002/aro2.38
- Cwynar, P., Stojkov, J., Wlazlak, K. (2019). African swine fever status in Europe. Viruses, 11 (4), 310 p. DOI:10.3390/v11040310
- Davies, K., Goatley, L.C., Guinat, C., Netherton, C.L., Gubbins, S., Dixon, L.K., Reis, A.L. (2017). Survival of African swine fever virus in excretions from pigs experimentally infected with the Georgia 2007/1 isolate. Transboundary and emerging diseases. 64 (2), pp. 425–431. DOI:10.1111/tbed.12381
- Dixon, L.K. (2025). Advances in African swine fever virus molecular biology and host interactions contributing to new tools for control. Journal of Virology. DOI:10.1128/jvi.00932-24
- Domelevo Entfellner, J.B., Okoth, E.A., Onzere, C.K., Upton, C., Njau, E.P., Höper, D., Henson, S.P., Oyola, S.O., Bochere, E., Machuka, E.M., Bishop, R.P. (2024). Complete genome sequencing and comparative Phylogenomics of nine African swine fever virus (ASFV) isolates of the virulent east African p72 genotype IX without viral sequence enrichment. Viruses. 16 (9), 1466 p. DOI:10.3390/v16091466
- Duan, H., Shen, A., Wang, M., Zhang, F., Zhang, Z., Zhang, Y., Lu, Y., Pei, Q., Zhang, A. (2025). Biomimetic phosphorus dendrimer multi-epitope nanovaccine enhances humoral and cellular immune response against African swine fever virus. Journal of Nanobiotechnology, 23 (1), 530 p. DOI:10.1186/s12951-025-035 93-7
- Duan, X., Ru, Y., Yang, W., Ren, J., Hao, R., Qin, X., Li, D., Zheng, H. (2022). Research progress on the proteins involved in African swine fever virus infection and replication. Frontiers in Immunology. 13. DOI:10.3389/fimmu.2022.947180
- Ekakoro, J.E., Nassali, A., Hauser, C., Ochoa, K., Ndoboli, D., Okwasiimire, R., Kayaga, E.B., Wampande, E.M., Havas, K.A. (2025). A description of the clinical signs and lesions of African swine fever, and its differential diagnoses in pigs slaughtered at selected abattoirs in central Uganda. Frontiers in Veterinary Science. 12. DOI:10.3389/fvets.2025.1568095
- Boklund, A.E., Ståhl, K., Miranda Chueca, M.Á., Podgórski, T., Vergne, T., Abrahantes, J.C., Cattaneo, E., Dhollander, S., Papanikolaou, A., Tampach, S., Mur, L. (2024). European Food Safe ty Authority (EFSA). Risk and protective factors for ASF in domestic pigs and wild boar in the EU, and mitigation measures for managing the disease in wild boar. EFSA Journal, 22 (12). DOI:10.2903/j.efsa.2024.9095
- Fan, R., Wei, Z., Zhang, M., Jia, S., Jiang, Z., Wang, Y., Cai, J., Chen, G., Xiao, H, Wei, Y., Shi, Y., Feng, J., Shen, B., Zheng, Y., Huang, Y., Wang, J. (2024). Development of novel monoclonal antibodies for blocking NF-κB activation induced by CD2v protein in African swine fever virus. Frontiers in Immunology. 15. DOI:10.3389/fimmu.2024.1352404
- Forth, J.H., Calvelage, S., Fischer, M., Hellert, J., Sehl-Ewert, J., Roszyk, H., Deutschmann, P., Reichold, A., Lange, M., Thulke, H.H., Sauter-Louis, C., Höper, D., Mandyhra, S., Sapachova, M., Beer, M., Blome, S. (2023). African swine fever virus–variants on the rise. Emerging microbes & infec tions. 12 (1). DOI:10.10 80/22221751.2022.2146537
- Franzoni, G., Pedrera, M., Sánchez-Cordón, P.J. (2023). African swine fever virus infection and cytokine response in vivo: an update. Viruses. 15 (1), 233 p. DOI:10.3390/v15010233
- Friedrichs, V., Deutschmann, P., Wernike, K., Carrau, T., Beer, M., Blome, S., Schäfer, A. (2025). Duration of immunity following infection with moderately virulent ASFV. BioRxiv. DOI:10.1101/2025.06.05.657993
- Gallardo, C., Soler, A., Nurmoja, I., Cano‐Gómez, C., Cvetkova, S., Frant, M., Woźniakowski, G., Simón, A., Pérez, C., Nieto, R., Arias, M. (2021). Dynamics of African swine fever virus (ASFV) infection in domestic pigs infected with virulent, moderate virulent and attenuated genotype II ASFV European isolates. Transboundary and emerging diseases. 68 (5), pp. 2826–2841. DOI:10.1111/tbed.14222
- Ge, S., Li, J., Fan, X., Liu, F., Li, L., Wang, Q., Liu,Y., Zhang, Y., Xu, T, Wu, X., Wang, Z. (2018). Molecular characterization of African swine fever virus, China, 2018. Emerging infectious diseases, 24 (11), 2131 p. DOI:10.3201/eid2411.181274
- Gervasi, V., Guberti, V. (2021). African swine fever endemic persistence in wild boar populations: Key mechanisms explored through modelling. Transboundary and emerging diseases. 68 (5), pp. 2812–2825. DOI:10.1111/tbed.14194
- He, W.R., Yuan, J., Ma, Y.H., Zhao, C.Y., Yang, Z.Y., Zhang, Y., Han, S., Wan, B., Zhang, G.P. (2022). Modulation of host antiviral innate immunity by African swine fever virus: a review. Animals. 12 (21), 2935 p. DOI:10.3390/ani12212935
- Hong, S.K., Cho, K.H., Kwon, J.H., Kim, D.W., Kim, J., Kim, D.Y., Kim, D.Y., Kang, H.E., Lee, J.S., Kim, Y.H. (2025). Pathological Characterization of African Swine Fever Viruses With Genetic Deletions Detected in South Korea. Transboundary and Emerging Diseases. 2025 (1). DOI:10.1155/tbed/9917280
- Huang, M., Zheng, H., Tan, W., Xiang, C., Fang, N., Xie, W., Wen, L., Liu, D., Chen, R. (2023). Molecular signatures in swine innate and adaptive immune responses to African swine fever virus antigens p30/p54/CD2v expressed using a highly efficient Semliki Forest virus replicon system. International Journal of Molecular Sciences, 24 (11), 9316 p. DOI:10.3390/ijms24119316
- Huang, R., Luo, R., Lan, J., Lu, Z., Qiu, H. J., Wang, T., Sun, Y. (2025). The Multigene Family Genes-Encoded Proteins of African Swine Fever Virus: Roles in Evolution, Cell Tropism, Immune Evasion, and Pathogenesis. Viruses, 17 (6), 865 p. DOI:10.3390/v17060865
- Huang, T., Li, F., Xia, Y., Zhao, J., Zhu, Y., Liu, Y., Qian, Y., Zou, X. (2024). African swine fever virus immunosuppression and virulence-related gene. Current Issues in Molecular Biology. 46 (8), pp. 8268–8281. DOI:10.3390/cimb46080488
- Jori, F., Bastos, A., Boinas, F., Van Heerden, J., Heath, L., Jourdan-Pineau, H., B., Martinez-Lopez, de Oliveira, R.P., Pollet, T., Quembo, C., Rea, K., Simulundu, E., Taraveau, F., Penrith, M.L. (2023). An updated review of Ornithodoros ticks as reservoirs of African swine fever in sub-Saharan Africa and Madagascar. Pathogens, 12 (3), 469 p. DOI:10.3390/pathogens12030469
- Juszkiewicz, M., Walczak, M., Woźniakowski, G., Podgórska, K. (2023). African swine fever: transmission, spread, and control through biosecurity and disinfection, including Polish trends. Viruses, 15 (11), 2275 p. DOI:10.3390/v15112 275
- Juszkiewicz, M., Walczak, M., Woźniakowski, G., Pejsak, Z., Podgórska, K. (2025). The influence of the temperature on effectiveness of selected disinfectants against African swine fever virus (ASFV). Viruses, 17 (2), 156 p. DOI:10.3390/v17020156
- Kayaga, E.B., Wampande, E.M., Ekakoro, J.E., Okwasiimire, R., Nassali, A., Ochoa, K., Hauser, C., Ndoboli, D., Havas, K.A. (2024). Detection of antibodies against Ornithodoros moubata salivary antigens and their association with detection of African swine fever virus in pigs slaughtered in central Uganda. Frontiers in Veterinary Science, 11. DOI:10.3389/fvets.2024.1328040
- Kovalʹ D., Iovenko A., Naydich,O., Kot, S. (2024). African swine fever - one of the main problems of ukrainian pig farming (review article). Agrarian Bulletin of the Black Sea Littoral, (113), pp. 69 74. DOI:10.37000/abbsl.2024.113.12 (In Ukrainian).
- Li, C., Jia, M., Hao, T., Peng, Q., Peng, R., Chai, Y., Shi, Y., Song, H., Gao, G.F. (2024). African swine fever virus A137R assembles into a dodecahedron cage. Journal of Virology, 98 (3). DOI:10.1128/jvi.01536-23
- Li, H., Liu, Q., Shao, L., Xiang, Y. (2023). Structural insights into the assembly of the African swine fever virus inner capsid. Journal of Virology, 97 (6). DOI:10.1128/jvi.00268-23
- Li, J., Song, J., Kang, L., Huang, L., Zhou, S., Hu, L., Zheng, J., Li, C., Zhang, X., He, X., Zhao, D., Bu, Z., Weng, C. (2021). pMGF505-7R determines pathogenicity of African swine fever virus infection by inhibiting IL-1β and type I IFN production. PLoS pathogens, 17 (7). DOI:10.1371/journal.ppat.1009733
- Li, M., Zheng, H. (2025). Insights and progress on epidemic characteristics, pathogenesis, and preventive measures of African swine fever virus: A review. Virulence, 16 (1). DOI:10.1080/21505594.2025.2457949
- Li, M., Liu, X., Peng, D., Yao, M., Wang, T., Wang, Y., Cao, H., Wang, Y., Dai, J., Luo, R., Deng, H., Li, J., Luo, Y., Li, Y., Sun, Y., Li, S., Qiu, H.-J., Li, L.F. (2024). The I7L protein of African swine fever virus is involved in viral pathogenicity by antagonizing the IFN-γ-triggered JAK-STAT signaling pathway through inhibiting the phosphorylation of STAT1. Plos Pathogens, 20 (9). DOI:10.1371/journal.ppat.1012576
- Li, X., Tian, K. (2018). African swine fever in China. The veterinary record. 183 (9), 300 p. DOI:10.1136/vr.k3774
- Li, Z., Chen, W., Qiu, Z., Li, Y., Fan, J., Wu, K., X., Li, Zhao, M., Ding, H., Fan, S., Chen, J. (2022). African swine fever virus: a review. Life, 12 (8), 1255 p. DOI:10.3390/life12081255
- Lin, X. (2024). Interactions Between African Swine Fever Virus and Host Cells: Mechanisms and Outcomes. International Journal of Molecular Veterinary Research, 14. DOI:10.5376/ijmvr.2024.14.0030
- Lv, C., Zhao, Y., Jiang, L., Zhao, L., Wu, C., Hui, X., Hu, X., Shao, Z., Xia, X., Sun, X., Zhang, Q., Jin, M. (2021). Development of a dual ELISA for the detection of CD2v-unexpressed lower-virulence mutational ASFV. Life, 11 (11), 1214 p. DOI:10.3390/life11111214
- Lv, T., Xie, X., Song, N., Zhang, S., Ding, Y., Liu, K., Diao, L., Chen, X., Jiang, S., Li, T., Zhang, W., Cao, Y. (2022). Expounding the role of tick in Africa swine fever virus transmission and seeking effective prevention measures: A review. Frontiers in Immunology, 13. DOI:10.3389/fimmu.2022.1093599
- Martin-Sanchez, F., Diamond, C., Zeitler, M., Gomez, A.I., Baroja-Mazo, A., Bagnall, J., Spiller, D., White, M., Daniels, M.J., Mortellaro, A., Peñalver, M., Paszek, P., Steringer, J.P., Nickel, W., Brough, D., Pelegrín, P. (2016) Inflammasome-dependent IL-1beta release depends upon membrane permeabilisation. Cell Death Differ, 23, pp. 1219 1231. DOI:10.1038/cdd.2015.176
- Montgomery, R.E. (1921). On a form of swine fever occurring in British East Africa (Kenya Colony). Journal of comparative pathology and therapeutics, 34, pp. 159–191. DOI:10.1016/S03681742(21)80031-4
- Niederwerder, M.C. (2021). Risk and mitigation of African swine fever virus in feed. Animals, 11 (3), 792 p. DOI:10.3390/ani11030792
- Niu, S., Guo, Y., Wang, X., Wang, Z., Sun, L., Dai, H., Peng, G. (2023). Innate immune escape and adaptive immune evasion of African swine fever virus: a review. Virology, 587. DOI:10.1016/j.virol.2023.109878
- Omelchenko, H., Avramenko, N.O., Petrenko, M.O., Wojciechowski, J., Pejsak, Z., Woźnia kowski, G. (2022). Ten Years of African Swine Fever in Ukraine: An Endemic Form of the Disease in the Wild Boar Population as a Threat to Domestic Pig Production. Pathogens. 11 (12), 1459 p. DOI:10.3390/pathogens11121459
- Pavone, S., Iscaro, C., Giammarioli, M., Beato, M.S., Righi, C., Petrini, S., Costarelli, S., Feliziani, F. (2024). Biological containment for African Swine Fever (ASF) laboratories and animal facilities: the Italian challenge in bridging the present regulatory gap and enhancing biosafety and biosecurity measures. Animals, 14 (3), 454 p. DOI:10.3390/ani14030454
- Penrith, M.-L., Kivaria, F.M. & Masembe, C. (2021). One hundred years of African swine fever: A tribute to R. Eustace Montgomery. Transboundary and Emerging Diseases. 68, pp. 2640–2642. DOI:10.1111/tbed.14183
- Piloto-Sardiñas, E., Cano-Argüelles, A.L., Maitre, A., Wu-Chuang, A., Mateos-Hernández, L., Corduneanu, A., Obregón, D., Oleaga, A., Pérez-Sánchez, R., Cabezas-Cruz, A. (2023). Comparison of salivary gland and midgut microbiome in the soft ticks Ornithodoros erraticus and Ornithodoros moubata. Frontiers in Microbiology, 14. DOI:10.3389/fmicb.2023. 1173609
- Plevriti, A., Lamprou, M., Mourkogianni, E., Skoulas, N., Giannakopoulou, M., Sajib, M.S., Wang, Z., Mattheolabakis, G., Chatzigeorgiou, A., Marazioti, A., Mikelis, C.M. (2024). The role of soluble CD163 (sCD163) in human physiology and pathophysiology. Cells, 13 (20), 1679 p. DOI:10.3390/cells13201679
- Porras, N., Sánchez-Vizcaíno, J.M., Barasona, J.Á., Gómez-Buendía, A., Cadenas-Fernández, E., Rodríguez-Bertos, A. (2024). Histopathologic evaluation system of African swine fever in wild boar infected with high (Arm07) and low virulence (Lv17/ WB/Riel) isolates. Veterinary Pathology, 61 (6), pp. 928–942. DOI:10.1177/03009858241266944
- Ranganatha, S., Rathnamma, D., Isloor, S., Hiremath, J., Chandranaik, B.M. (2020). African swine fever: analysing its epidemiology, pathogenesis and control strategies: A review. Indian J Anim Res, 1 (10). DOI:10.18805/IJAR.B-5274
- Reis, A.L., Rathakrishnan, A., Petrovan, V., Islam, M., Goatley, L., Moffat, K., Vuong, M.T., Lui, Y., Davis, S.J., Ikemizu, S., Dixon, L.K. (2025). From structure prediction to function: defining the domain on the African swine fever virus CD2v protein required for binding to erythrocytes. Mbio, 16 (2). DOI:10.1128/mbio.01655-24
- Romanyshyna, T.O., Behas, V.L., Lakhman, A.R. (2017). Osoblyvosti epizootolohiyi ta patohenezu afrykansʹkoyi chumy svyney [Features of epizootology and pathogenesis of African swine fever]. Problemy zooinzheneriyi ta veterynarnoyi medytsyny [Problems of zooengineering and veterinary medicine]. 1, pp. 193–197. (In Ukrainian).
- Ruedas-Torres, I., Thi to Nga, B., Salguero, F.J. (2024). Pathogenicity and virulence of African swine fever virus. Virulence, 15 (1). DOI:10.108 0/21505594.2024.2375550).
- Sánchez-Carvajal, J.M., Godel, A., Husson, N., Summerfield, A., García-Nicolás, O. (2025). Plasmacytoid dendritic cell sensing of African swine fever virus–infected macrophages results in STING-dependent robust interferon-α production. The Journal of Immunology, 214 (1), pp. 130–140. DOI:10.1093/jim mun/vkae008
- Sánchez‐Vizcaíno, J.M., Laddomada, A., Arias, M.L. (2019). African swine fever virus. Diseases of swine, ppp. 443–452. DOI:10.1002/ 9781119350927.ch25
- Sauter-Louis, C., Conraths, F.J., Probst, C., Blohm, U., Schulz, K., Sehl, J., M., Fischer, Forth, J.H., Zani, L., Depner, K., Mettenleiter T.C., Beer, M., Blome, S. (2021). African swine fever in wild boar in Europe – A review. Viruses, 13 (9), 1717 p. DOI:10.3390/v13091717
- Savcheniuk M., Shubara O., Shevchenko M., Panteleienko O., Ukhovskyi V., Kornienko L., Bilyk S., Dovgal O., Tsarenko T. (2024). Comparative epidemiological study of the spread of African swine fever in Ukraine and some Eastern European countries. Nauk. vìsn. vet. med., 1, pp. 49–59. DOI:10.33245/2310-4902-2024-188-1-49-59
- Schäfer, A., Franzoni, G., Netherton, C.L., Hartmann, L., Blome, S., Blohm, U. (2022). Adaptive cellular immunity against African swine fever virus infections. Pathogens, 11 (2), 274 p. DOI:10.3390/pathogens11020274
- Sehl-Ewert, J., Deutschmann, P., Breithaupt, A., Blome, S. (2022). Pathology of African swine fever in wild boar carcasses naturally infected with German virus variants. Pathogens, 11 (11), 1386 p. DOI:10.3390/pathogens11111386
- Sharma, G., Balaji, S., Nautiyal, S., Nandi, S., Biswas, S., Pillai, V., Kattoor, J., Mahajan, S. (2025). Viral infections of pig: Signs, prevention, and control. In Commercial Pig Farming. Academic Press, pp. 243–262. DOI:10.1016/B978-0-443 23769-0.00015-4
- Shi, F., Xu, Z., Gao, P., Qu, Y., Ge, X., Zhang, Y., Han, J., Guo, X., Zhou, L., Yang, H. (2025). African swine fever virus infection enhances CD14-dependent phagocytosis of porcine alveolar macrophages to promote bacterial uptake and apoptotic body-mediated viral transmission. Journal of Virology. DOI:10.1128/jvi.00690-25
- Solikhah, T.I., Rostiani, F., Nanra, A.F.P., Dewi, A.D.P.P., Nurbadri, P.H., Agustin, Q.A.D., Solikhah, G.P. (2025). African swine fever virus: Virology, pathogenesis, clinical impact, and global control strategies. Veterinary World, 18 (6), 1599 p. DOI:10.14202/vetworld.2025.1599-1613
- Song, S., Shin, K.S., Kim, S.J., Joo, Y.Y., Han, B., Park, S.H., Ku, H.-O., Jeong, W., Park, C.K. (2025). A Practical Framework for ASFV Disinfectant Evaluation: Differentiating Cytopathic Effects from Cytotoxicity via Integrated Analytical Methods. Pathogens, 14 (5), 451 p. DOI:10.3390/pathogens14050451
- Sun, H., Yang, J., Zhang, Z., Wu, M., Tian, Z., Liu, Y., Zhang, X., Zhong, J., Yang, S., Chen, Y., Luo, J, Guan, G., Yin, H., Niu, Q. (2025). The African swine fever virus gene MGF_360-4L inhibits interferon signaling by recruiting mitochondrial selective autophagy receptor SQSTM1 degrading MDA5 antagonizing innate immune responses. mBio, 16 (4). DOI:10.1128/mbio.02677-24
- Tian, Y., Wang, D., He, S., Cao, Z., Li, W., Jiang, F., Shi, Y., Hao, Y., Wei, X., Wang, Q., Qie, S., Wang, J., Li, T., Hao, X., Zhu, J., Wu, J., Shang, S., Zhai, X. (2024). Immune cell early activation, apoptotic kinetic, and T-cell functional impairment in domestic pigs after ASFV CADC_HN09 strain infection. Frontiers in Microbiology, 15. DOI:10.3389/fmicb.2024.1328177
- Torresi, C., Biccheri, R., Cammà, C., Gal lardo, C., Marcacci, M., Zoppi, S., Secondini, B., Riverso, C., Soler, A., Casciari, C., Pela, M., Rossi, E., Pellegrini, C., Iscaro, C., Feliziani, F., Giammarioli, M. (2025). Genome-Wide Approach Identifies Natural Large-Fragment Deletion in ASFV Strains Circulating in Italy During 2023. Pathogens, 14 (1), 51 p. DOI:10.3390/pathogens14010051
- Urbano, A.C., Ferreira, F. (2022). African swine fever control and prevention: an update on vac cine development. Emerging microbes & infections. 11 (1), pp. 2021–2033. DOI:10.1080/22221751.202 2.2108342
- U Zaporizhzhi – afrykansʹka chuma [African plague in Zaporizhia] (2012). Unian. ua.com. Available at:https://www.unian.ua/society/679497-u-zaporijji-afrikanska-chuma.html?ut.... com (In Ukrainian).
- Venkateswaran, D., Prakash, A., Nguyen, Q.A., Salman, M., Suntisukwattana, R., Atthaapa, W., Tantituvanont, A., Lin, H., Songkasupa, T., Nilubol, D. (2024). Comprehensive characterization of the genetic landscape of African swine fever virus: Insights into infection dynamics, immunomod ulation, virulence and genes with unknown function. Animals: an Open Access Journal from MDPI, 14 (15), 2187 p. DOI:10.3390/ani14152187
- Vu, H.L., McVey, D.S. (2024). Recent progress on gene-deleted live-attenuated African swine fever virus vaccines. npj Vaccines, 9 (1), 60 p. DOI:10.1038/s41541-024-00845-9
- Wang, F., Zhang, H., Hou, L., Yang, C., Wen, Y. (2021). Advance of African swine fever virus in recent years. Research in veterinary science, 136, pp. 535–539. DOI:10.1016/j.rvsc.2021.04.004
- Wang, G., Xie, M., Wu, W., Chen, Z. (2021). Structures and functional diversities of ASFV proteins. Viruses, 13 (11), 2124 p. DOI:10.3390/v13112124
- Wang, L., Li, Y., Shi, J. (2025). African Swine Fever Virus. In: Wang, L. (eds) Veterinary Virology of Domestic and Pet Animals. Springer, Cham. DOI:10.1007/978-3-031-54690-7_75-1
- Wang, S., Zhang, J., Zhang, Y., Yang, J., Wang, L., Qi, Y., Han, X., Zhou, X., Miao, F., Chen, T., Wang, Y., Zhang, F., Zhang, S., Hu, R. (2021). Cytokine storm in domestic pigs induced by infection of virulent African swine fever virus. Frontiers in veterinary science, 7. DOI:10.3389/fvets.2020.601641
- Wang, Y., Kang, W., Yang, W., Zhang, J., Li, D., Zheng, H. (2021). Structure of African swine fever virus and associated molecular mechanisms underlying infection and immunosuppression: a review. Frontiers in immunology, 12. DOI:10.3389/fimmu.2021.715582
- Wang, Y., Li, J., Cao, H., Li, L. F., Dai, J., Cao, M., Denga, H., Zhonga, D., Luoa, Y., Lia, Y., Lia, M., Penga, D., Suna, Z., Gaoa, X., Moona, A., Tangb, L., Suna, Y., Lia, S., Qiu, H.J. (2024). African swine fever virus modulates the endoplasmic reticulum stress-ATF6-calcium axis to facilitate viral replication. Emerging Microbes & Infections, 13 (1). DOI:10.1080/22221751.2024.2399945
- Wei, J., Liu, C., He, X., Abbas, B., Chen, Q., Li, Z., Feng, Z. (2023). Generation and characterization of recombinant pseudorabies virus delivering African swine fever virus CD2v and p54. International Journal of Molecular Sciences, 25 (1), 335 p. DOI:10.3390/ijms25010335
- Wen, Y., Duan, X., Ren, J., Zhang, J., Guan, G., Ru, Y., Li, D., Zheng, H. (2024). African Swine Fever Virus I267L Is a Hemorrhage-Related Gene Based on Transcriptome Analysis. Microorganisms, 12 (2), 400 p. DOI:10.3390/microorganisms12020400
- Williams, D.T., Mettenleiter, T.C., Blome, S. (2024). African swine fever: advances and challenges. Revue scientifique et technique (International Office of Epizootics), pp. 58–69. DOI:10.20506/rst.se.3559
- Xiong, W., Chen, H., Chen, Y., Wang, K., Lian, T., Zhang, W., Yu, Q., Gao, X., Su, J., He, Q., Wang, X., Yu, J., Cui, M. (2024). Diverse immune cell profiles in ASFV-associated lymphopenia. Animal Diseases, 4 (1), 45 p. DOI:10.1186/s44149-024 00150-x
- Xu, F., Li, N., Xue, Y., Wang, Z., Fang, Z., An, H., Liu, S., Weng, C., Huang, L., Wang, G. (2025). From hemorrhage to apoptosis: understanding the devastating impact of ASFV on piglets. Microbiology Spectrum. DOI:10.1128/spectrum.02902-24
- Xu, Y., Wu, L., Hong, J., Chi, X., Zheng, M., Wang, L., Chen, J.-L., Guo, G. (2024). African swine fever virus A137R protein inhibits NF-κB activation via suppression of MyD88 signaling in PK15 and 3D4/21 cells in vitro. Veterinary Microbiology, 292. DOI:10.1016/j.vetmic. 2024.110067
- Xu, Z., Hu, Y., Li, J., Wang, A., Meng, X., Chen, L., Wei, J., Tong, W., Kong, N., Yu, L., Yu, H., Shan, T., Tong, G., Wang, G., Zheng, H. (2023). Screening and identification of the dominant antigens of the African swine fever virus. Frontiers in Veterinary Science, 10. DOI:10.3389/fvets.2023.1175701
- Xu, Z., Ma, W., Wang, J., Chen, H., Li, H., Yin, Z., Hao, J., Chen, K. (2024). Nuclear HMGB1 is critical for CD8 T cell IFN-γ production and anti-tumor immunity. Cell reports, 43 (8). DOI:10.1016/j.celrep.2024.114591
- Xue, Q., Liu, H., Zhu, Z., Yang, F., Song, Y., Li, Z., Xue, Z., Cao, W.,Liu, X., Zheng, H. (2022). African swine fever virus regulates host energy and amino acid metabolism to promote viral replication. Journal of Virology, 96 (4). DOI:10.1128/jvi.01919-21
- Yang, S., Miao, C., Liu, W., Zhang, G., Shao, J., Chang, H. (2023). Structure and function of African swine fever virus proteins: Current understanding. Frontiers in microbiology, 14. DOI:10.3389/fmicb.2023.1043129
- Yang, X., Sun, E., Zhai, H., Wang, T., Wang, S., Gao, Y., Hou, Q., Guan, X., Lia, S., Li, L.F., Wu, H., Luo, Y., Li, S., Sun, Y., Zhao, D., Li, Y., Qiu, H.J. (2024). The antibodies against the A137R protein drive antibody-dependent enhancement of African swine fever virus infection in porcine alveolar macrophages. Emerging Microbes & Infections, 13 (1). DOI:10.1080/22221751.2024.2377599
- Yang, Y., Yuan, H., Zhang, Y., Luan, J., Wang, H. (2025). Progress in African swine fever vector vaccine development. International Journal of Molecular Sciences, 26 (3), 921 p. DOI:10.3390/ijms26030921
- Zhang, K., Li, S., Liu, S., Li, S., Qu, L., Gao, G.F., Qiu, H.J. (2021). Spatiotemporally orchestrated interactions between viral and cellular proteins involved in the entry of African swine fever virus. Viruses, 13 (12), 2495 p. DOI:10.3390/v13122495
- Zhang, T., Lu, Z., Liu, J., Tao, Y., Si, Y., Ye, J., Cao, S., Zhu, B. (2024). Host innate and adaptive immunity against african swine fever virus infection. Vaccines, 12 (11), 1278 p. DOI:10.3390/vaccines12111278
- Zhu, J.J. (2022). African swine fever vaccinology: the biological challenges from immunological perspectives. Viruses, 14 (9), 2021 p. DOI:10.3390/v14092021
- Zhu, W., Huyan, Y., Jiang, C., Meng, K., Liu, Q., Liu, Y., Z., Fang, J., Li, Zhu, Y., Sun, M., Bu, Z., Xiang, Y., Zhao, D., Meng, G. (2025). ASFV major capsid p72 trimers function as a pH sensor during uncoating process of virus endocytosis and facilitate its application as conformational antigen detection. Research Square Preprints. DOI:10.21203/rs.3.rs-6368001/v1
- Zuo, X., Peng, G., Zhao, J., Zhao, Q., Zhu, Y., Xu, Y., Xu, L., Li, F., Xia, Y., Liu, Y., Wang, C., Wang, Z., Wang, H., Zou, X. (2024). Infection of domestic pigs with a genotype II potent strain of ASFV causes cytokine storm and lymphocyte mass reduction. Frontiers in immunology, 15. DOI:10.3389/fimmu.2024.1361531
| Долучення | Розмір |
|---|---|
| 1.41 МБ |
https://orcid.org/0000-0003-3483-2887