You are here

Autologous skin transplantation using water extract of bay leaves (Laurus nobilis L.)

Assessing the impact of aqueous bay leaf (Laurus nobilis) extract on the histological development of skin graft healing in rabbits was the aim of this investigation. Group A (control) and Group B (treatment with bay leaf extract) were randomly assigned to sixteen clinically healthy adult rabbits of both sexes, weighing 1.25–2 kg. All animals underwent sterile surgical creation of full-thickness skin wounds (4 cm²) bilaterally on the abdomen, with partial skin grafting at each site. Skin tissue biopsies were collected from both groups on days 3, 7, 14, and 21 for histological analysis. On day 3, Group B exhibited reduced dermal inflammation and edema compared to Group A. By day 7, the treated wounds showed enhanced collagen organization, hair follicle dilatation, and moderate vascular changes, while control wounds displayed pronounced inflammation. On day 14, treated wounds demonstrated extensive dermal fibrosis and mononuclear cell infiltration with endothelial hyperplasia, whereas control wounds showed severe sebaceous gland proliferation and inflammatory exudate. At day 21, Group B wounds showed more mature fibrosis and glandular proliferation than group A, which was still with minimal connective tissue regeneration, topically applied bay leaf aqueous extract significantly can accelerate skin graft healing in rabbit via enhancing inflammation modulation and tissue regeneration too, may be a natural therapeutic agent for treatment of other wound in future.

Keywords: bay leaves, skin grafting, rabbit, anti-inflammatory.

  1. Ayoub, N.A., Hashim, A.N., Hussein, S.A., Hegazi, N.M., Hassanein, H.M., Nawwar, M.A. (2013). Hepatoprotective effect of bay leaves crude extract on primary cultured rat hepatocytes. European Scientific Journal (ESJ), 9 (30), pp. 647–655.
  2. Awada, F., Hamade, K., Kassir, M., Hammoud, Z., Mesnard, F., Rammal, H., Fliniaux, O. (2023). Laurus nobilis leaves and fruits: A review of metabolite composition and interest in human health. Applied Sciences. 13 (7), 4606 p. DOI:10.3390/app13074606.
  3. Branski, L.K., Herndon, D.N., Barrow, R.E. (2007). A review of gene therapy in wound healing. International Journal of Burns and Trauma, 1 (1), pp. 1–12. DOI:10.1016/j.burns.2008.03.009.
  4. Sharangi, A.B., Guha, S. (2013). Wonders of leafy spices: Medicinal properties ensuring human health. Science International. 1 (9), pp. 312–317. DOI:10.17311/sciintl.2013.312.317.
  5. Mishra, P.K., Tripathi, J., Gupta, S., Variyar, P.S. (2019). GC-MS olfactometric characterization of odor active compounds in cooked red kidney beans (Phaseolus vulgaris). Heliyon, 5 (9). DOI:10.1016/j.heliyon.2019.e02459
  6. Landén, N.X., Li, D., Ståhle, M. (2016). Transition from inflammation to proliferation: a critical step during wound healing. Cellular and Molecular Life Sciences. 73 (20), pp. 3861–3885. DOI:10.1007/ s00018-016-2268-0.
  7. Baytop, T. (1985). Therapy with Medicinal Plants in Turkey (Past and Present). Istanbul: Nobel Tıp Kitabevleri, 194 p.
  8. Aqili Khorasani, M. S. (1992). Collection of drugs (Materia medica). Engelab-e-Eslami Publishing and Educational Organization, pp. 624–630.
  9. Barla, A., Topçu, G., Öksüz, S. (2007). Secondary metabolites from Laurus nobilis L. Natural Product Research. 21 (2), pp. 138–145.
  10. Khodja, Y.K., Bachir-Bey, M., Ladjouzi, R., Katia, D., Khettal, B. (2021). In vitro antioxidant and antibacterial activities of phenolic and alkaloid extracts of Laurus nobilis. South Asian Journal of Experimental Biology, 11 (3). DOI:10.38150/sajeb.11(3).p345-354
  11. DesJardins-Park, H.E., Gurtner, G.C., Wan, D.C., Longaker, M.T. (2022). From chronic wounds to scarring: the growing health care burden of under-and over-healing wounds. Advances in Wound Care. 11 (9), pp. 496–510. DOI:10.1089/wound.2021.0039
  12. Fossum, T.W. (2018). Small Animal Surgery E-Book: Small Animal Surgery E-Book. Elsevier Health Sciences.
  13. Bright, C.T. (1994). Fracture healing in the rabbit’s fibula when subjected to various capacities couple electrical field. Journal of Orthopaedic Research, 3, pp. 331–340.
  14. Mitic, V., Ilic, M., Dimitrijevic, M., Cvetkovic, J., Ciric, S., Jovanovic, V.S. (2016). Chemometric characterization of peach, nectarine and plum cultivars according to fruit phenolic content and antioxidant activity. Fruits, 71 (1), pp. 57–66. DOI:10.1051/fruits/2015042
  15. Albozachri, J.M.K., Al-Tomah, H.M., Wali, O.N., Jameel, Y.J. (2019). A comparison study of nefopam-ketamine, tramadol-ketamine and xylazine-ketamine anesthesia in rabbit. Research Journal of Pharmacy and Technology, 12 (5), pp. 2439–2442. DOI:10.5958/0974-360X. 2019.00410.9
  16. Grunberger, D., Banerjee, R., Eisinger, K., Oltz, E.M., Efros, L., Caldwell, M., Estevez, V., Nakanishi, K. (1988). Preferential cytotoxicity on tumor cells by caffeic acid phenethyl ester isolated from propolis. Experientia, 44 (3), pp. 230–232. DOI:10.1007/BF01941717
  17. Almadani, Y.H., Vorstenbosch, J., Davison, P.G., Murphy, A.M. (2021). Wound healing: a comprehensive review. In Seminars in plastic surgery. Thieme Medical Publishers, Inc. Vol. 35, no. 03, pp. 141–144. DOI:10.1055/s-0041-1731791.
  18. Irvin, T.T. (1995). Surgical wound healing in rats. Journal of Biological Chemistry, 290, pp. 14854 14860.
  19. Gushiken, L.F.S., Beserra, F.P., Bastos, J.K., Jackson, C.J., Pellizzon, C.H. (2021). Cutaneous wound healing: An update from physiopathology to current therapies. Life, 11 (7), 665 p. DOI:10.3390/ life11070665.
  20. Solmaz, H., Dervisoglu, S., Gulsoy, M., Ulgen, Y. (2016). Laser biostimulation of wound heal ing: bioimpedance measurements support histology. Lasers in medical science, 31 (8), pp. 1547–1554. DOI:10.1007/s10103-016-2013-9
  21. Loots, M.A.M., Kenter, S.B., Au, F.L. (2002). Fibroblasts derived from chronic diabetic ulcers differ in their response to stimulation with EGF, IGF-I, bFGF, and PDGF-AB compared to controls. European Journal of Cell Biology, 81 (3), pp. 153–160. DOI:10.1078/0171-9335-00228.
  22. Gurtner, G.C., Werner, S., Barrandon, Y., Longaker, M.T. (2008). Wound repair and regeneration. Nature, 453 (7193), pp. 314–321. DOI:10.1038/nature07039.
  23. Eming, S.A., Martin, P., Tomic-Canic, M. (2014). Wound repair and regeneration: mechanisms, signaling, and translation. Science Translational Medicine, 6 (265). DOI:10.1126/scitranslmed. 3009337.
  24. Barrientos, S., Stojadinovic, O., Golinko, M.S., Brem, H., Tomic-Canic, M. (2008). Growth factors and cytokines in wound healing. Wound Repair and Regeneration, 16 (5), pp. 585–601. DOI:10.1111/ j.1524-475X.2008.00410.x.
  25. Murray, P.J., Wynn, T.A. (2011). Protective and pathogenic functions of macrophage subsets. Nature Reviews Immunology, 11 (11), pp. 723–737. DOI:10.1038/nri3073.
AttachmentSize
PDF icon albozachri_2_2025_.pdf847.25 KB