You are here

Climatic stress in pregnant sows: adaptive responses and effects on productivity

The article presents data from the scientific literaturedescribing the influence of microclimate parameters on thebody of sows and their offspring. The key factors of thenormal course of physiological processes in the body of sowsand piglets are the optimal temperature, light, air velocity andhumidity. Sensitivity of sows to climatic factors increasessignificantly during pregnancy and lactation. At elevatedoutdoor temperatures, heat stress develops, which negativelyaffects well-being and productivity of sows and significantlyharms the offspring due to intrauterine temperature load. Itis established that there are differences in genetic tolerance to high temperature between different breeds of sows.Changes in physiological and behavioral parameters can beobserved at different stages of the reproductive cycle of sows.Pregnant sows respond to heat stress by increasing rectal andskin temperature, respiration rate and reducing their overallactivity. Elevated ambient temperature during late pregnancyincreases the catabolism of lipids and proteins in the bodyof sows, the concentration of adrenocorticotropic hormone,cortisol in the blood increases. Heat-exposed sows also havea shorter gestation period and a lower nest weight of pigletsat birth. During lactation, there are changes in general andfeed behavior, reduced feed intake and as a result, the processof milk production is disrupted. In particular, it was foundthat with increasing temperature from 20.0 to 29.0 °C milkproduction in sows decreases from 10.43 to 7.35 kg/day(p <0.05). The content of immunoglobulins, vitamins andmicroelements in milk decreases. This leads to a violation ofimportant physiological functions of the body of piglets andhas a negative impact on their growth and development. Themost critical periods for sows are the end of summer and thebeginning of autumn, when anestrus is observed, the rates offertilization, farrowing, fertility and weight gain of piglets arereduced. This is due to an imbalance in the hypothalamicpituitary-adrenal system and high levels of melatonin in theblood. The use of physiological and behavioral indicatorsis necessary to prevent climatic stress and increase animalproductivity.

Key words: physiology, pigs, stress factors, thermoregulation, behavior, reproductive system, pregnancy, lactation.

 

 

  1. Guo, Z., Lv, L., Liu, D., Fu, B. (2018). Effects of heat stress on piglet production/performance parameters. Trop. Anim. Health Prod. Vol. 50(6), рр. 1203–1208. DOI:10.1007/s11250-018-1633-4.
  2. Prunier, A., Heinonen, M., Quesnel, H. (2010). High physiological demands in intensively raised pigs: impact on health and welfare. Animal. Vol. 4(6), рр. 886–898. DOI:10.1017/S175173111000008X.
  3. Mengbing, Cao, Chao, Zong, Xiaoshuai, Wang, Guanghui, Teng, Yanrong, Zhuang, Kaidong, Lei. (2021). Modeling of heat stress in sows-Part 1: Establishment of the prediction model for the equivalent temperature index of the sows. Animals (Basel). Vol. 20, 11(5), рр. 1472–1478. DOI:10.3390/ani11051472.
  4. Silvia, Martínez-Miró, Fernando, Tecles, Marina, Ramón., Damián, Escribano, Fuensanta, Hernández. (2016). Causes, consequences and biomarkers of stress in swine: an update. BMC Veterinary Research. Vol. 12, рр. 171–180. DOI:10.1186/s12917-016-0791-8.
  5. Mengbing, Cao, Chao, Zong, Yanrong, Zhuang, Guanghui, Teng, Shengnan, Zhou, Ting, Yang. (2021). Modeling of Heat Stress in Sows Part 2: Comparison of various thermal comfort indices. Animals (Basel). Vol. 21, 11(6), рр. 1498–1504. DOI:10.3390/ani11061498.
  6. Gourdine, J., Mandonnet, N., Giorgi, M., Renaudeau, D. (2017). Genetic parameters for thermoregulation and production traits in lactating sows reared in tropicalclimate. Animal. Vol. 11(3), рр. 365–374. DOI:10.1017/S175173111600135X.
  7. Bloemhof, S., Merks, J.W., Knol, E.F. (2008). Sow line differences in heat stress tolerance expressed in reproductive performance traits. J. Anim. Sci. Vol. 86(12), рр. 3330–3337. DOI:10.2527/jas.2008-0862.
  8. Kim, K.Y., Choi, Y.H., Hosseindoust, A.L., Kim, M.J., Moturi, J.S. (2020). Effects of free feeding time system and energy level to improve the reproductive performance of lactating sows during summer. J. Anim. Sci. Technol. Vol. 62(3), рр. 356–364. DOI:10.5187/jast.2020.62.3.356.
  9. De Melo, R.L., Dutra Júnior, W.M., Palhares, L.O., De Moura Ferreira, D.N., De Aquino, R.S., Cordeiro Manso, H.E. (2019). Behavioral and physiological evaluation of sows raised in outdoors systems in the Brazilian semiarid region. Trop. Anim. Health. Prod. Vol. 51(5), рр. 1057–1063. DOI:10.1007/s11250-018-1780-7.
  10. Bloemhof, S.A., Mathur, P.K., Knol, E.F. (2013). Effect of daily environmental temperature on farrowing rate and total born in dam line sows. J. Anim. Sci. Vol. 91(6), рр. 2667–2679. DOI:10.2527/jas.2012-5902.
  11. Williams, A.M., Safranski, T.J., Spiers, D.E., Eichen, P.A., Coate, E.A. (2013). Effects of a controlled heat stress during late gestation, lactation, and after weaning on thermoregulation, metabolism, and reproduction of primiparous sows. J. Anim. Sci. Vol. 91(6), рр. 2700–2714. DOI:10.2527/jas.2012-6055.
  12. Gupta, S. (2018). Systematic review of the literature: Best practices. Academic Radiology. Vol. 25, (11), рр. 1481– 1490. DOI:10.1016/j.acra.2018.04.025.
  13. He, J., Zheng, W., Lu, M., Yang, X., Xue, Y., Yao, W. (2019). Controlled heat stress duringlate gestation affects thermoregulation, productive performance, and metabolite profiles of primiparous sow. J. Therm. Biol. Vol. 81, рр. 33– 40. DOI:10.1016/j.jtherbio.2019.01.011.
  14. Serviento, A., Lebret, B., Renaudeau, D. (2020). Chronic prenatal heat stress alters growth, carcass composition, and physiological response of growing pigs subjected to postnatal heat stress. J. Anim. Sci. Vol. 1, 98 (5), рр. 161–169. DOI:10.1093/jas/skaa161.
  15. He, J., Zheng, W., Tao, C., Guo, H., Xue, Y., Zhao, R., Yao, W. (2020). Heat stress during late gestation disrupts maternal microbial transmission with altered offspring's gut microbial colonization and serum metabolites in a pig model. Environ. Pollut. Vol. 266 (3), рр. 115–111. DOI:10.1016/j.envpol.2020.115111.
  16. Guo, H., He, J., Yang, X., Zheng, W., Yao, W. (2020). Responses of intestinal morphology and function in offspring to heat stress in primiparous sows during late gestation. J. Therm. Biol. Vol. 89, рр. 1025–1039. DOI:10.1016/j.jtherbio.2020.102539.
  17. Matthew, C., Lucy T., Safranski, J. (2017). Heat stress in pregnant sows: Thermal responses and subsequent performance of sows and their offspring. Mol. Reprod. Dev. Vol. 84, рр. 946–956. DOI:10.1002/mrd.22844.
  18. Bernhard, C.J., Sharp, K.G., Safranski, T.J., Lamberson, W.R., Lucy, M.C. (2020). Reproduction and reproductive tract morphology of male and female pigs whose mothers were heat stressed during the second month of gestation. J. Anim. Sci. Vol. 1, 98(11), рр. 352–359. DOI:10.1093/jas/skaa352.
  19. Almond, P., Bilkei, G. (2005). Seasonal infertility in large pig production units in an Eastern-European climate. Aust. Vet. J. Vol. 83, рр. 344–346. DOI:10.1111/j.1751-0813.2005.tb15627.x.
  20. Mós, J.V., Nascimento, S.T., Murata, L.S., Dos Santos, V.M., Neto, A.J., de Oliveira, E.M. (2020). Thermal comfort of sows in free-range system in Brazilian Savanna. J. Therm. Biol. Vol. 88, рр. 1024–1029. DOI:10.1016/j.jtherbio.2019.102489.
  21. Malmkvist, J., Damgaard, B., Pedersen, L., Jørgensen, E., Thodberg, K., Chaloupková, H. (2009). Effects of thermal environment on hypothalamic-pituitary – adrenal axis hormones, oxytocin, and behavioral activity in periparturient sows. J. Anim. Scien. Vol. 87(9), рр. 2796– 27805. DOI:10.2527/jas.2008-1592.
  22. Gourdine, J., Bidanel, J., Noblet, J, Renaudeau, D. (2006). Effects of season and breed on the feeding behavior of multiparous lactating sows in a tropical humid climate. J. Anim. Sci. Vol. 84(2), рр. 469–480. DOI:10.2527/2006.842469x.
  23. Renaudeau, D., Noblet, J. (2001). Effects of exposure to high ambient temperature and dietary protein level on sow milk production and performance of piglets. J. Anim. Sci. Vol. 79(6), рр. 1540–1548. DOI:10.2527/2001.7961540x.
  24. Lucy, M.C., Safranski, T.J. (2017). Heat stress in pregnant sows: Thermal responses and subsequent performance of sows and their offspring. Mol. Reprod. Dev. Vol. 84 (9), рр. 946–956. DOI:10.1002/mrd.22844.
  25. Almond, P.K., Bilkei, G. L. (2005). Seasonal infertility in large pig production units in an EasternEuropean climate. Aust. Vet. J. Vol. 83(6), рр. 344–346. DOI:10.1111/j.1751-0813.2005. tb15627.x.
  26. McGlone, J.J., Stansbury, W.F., Tribble, L.F., Morrow, J.L. (1988). Photoperiod and heat stress influence on lactating sow performance and photoperiod effects on nursery pig performance. J. Anim. Sci. Vol. 66(8), рр. 1915–1919. DOI: 10.2527/jas1988.6681915x.
  27. Hälli, O., Tast, A., Heinonen, M., Munsterhjelm, C., Valros, A. (2008). Short or long day light regimes may not affect reproductive performance in the sow. Reprod Domest Anim. Vol. 43(6), рр. 708–712. DOI:10.1111/j.1439-0531.2007.00976.x.
  28. Chokoe, T.C., Siebrits, F.K. (2009). Effects of season and regulated photoperiod on the reproductive performance of sows. S. Afr. J. Anim. Sci. Vol. 39 (1), рр. 45–55. Available at:http://www. scielo.org.za/pdf/sajas/v39n1/07.pdf.
  29. Prunier, A., Dourmad, J., Etienne, M. (1994). Effect of light regimen under various ambient temperatures on sow and litter performance. J. Anim. Sci. Vol. 72(6), рр. 1461–1466. DOI:10.2527/1994.7261461x.
  30. Love, R., Evans, G., Klupiec, C. (1993). Seasonal effects on fertility in gilts and sows. J. Reprod. Fertil. Suppl. Vol. 48, рр. 191–206. PMID: 8145204.
  31. De Rensis, F., Ziecik, A.J., Kirkwood, R.N. (2017). Seasonal infertility in gilts and sows: Aetiology, clinical implications and treatments. Theriogenology. Vol. 1, 96, рр. 111–117. DOI:10.1016/j. theriogenology.2017.04.004.
  32. Amavizca-Nazar, A., Montalvo-Corral, M., GonzálezRios, H., Pinelli-Saavedra, A. (2019). Hot environment on reproductive performance, immunoglobulins, vitamin E, and vitamin A status in sows and their progeny under commercial husbandry. J. Anim. Sci. Technol. Vol. 61(6), рр. 340–351. DOI:10.5187/jast.2019.61.6.340.
  33. Schwarz, T., Małopolska, M., Nowicki, J., Tuz, R., Lazic, S., Kopyra, M., Bartlewski, P. (2020). Effects of individual versus group housing system during the weaningto-estrus interval on reproductive performance of sows. Animal. Vol. 27, рр. 100–122. DOI:10.1016/j.animal.2020.100122.
  34. Sevillano, C.A., Mulder, H.A., Rashidi, H.K., Mathur, P.K., Knol, E.F. (2016). Genetic variationfor farrowing rate in pigs in response to change in photoperiod and ambient temperature. J. Anim. Sci. Vol. 94(8), рр. 3185– 3197. DOI:10.2527/jas.2015-9915.
  35. Bloemhof, S., Mathur, P., Knol, E., Van der Waaij, E. (2013). Effect of daily environmental temperature on farrowing rate and total born in dam line sows. J. Anim. Sci. Vol. 91(6), рр. 2667–2679. DOI:10.2527/jas.2012-5902.
  36. Zhao, Y., Liu, X., Mo, D., Chen, Q., Chen, Y. (2015). Analysis of reasons for sow culling and seasonal effects on reproductive disorders in Southern China. Anim. Reprod. Sci. Vol. 159, рр.191–197. DOI:10.1016/j. anireprosci.2015.06.018.
  37. Wegner, K., Lambertz, C., Das, G., Reiner, G., Gauly, M. (2016). Effects of temperature and temperaturehumidity index on the reproductive performance of sows during summer months under a temperate climate. Anim. Scien. J. Vol. 87(11), рр. 1334–1339. DOI:10.1111/asj.12569.
  38. Wegner, K., Lambertz, C., Daş, G., Reiner, G., Gauly, M. (2014). Climatic effects on sow fertility and piglet survival under influence of a moderate climate. Animal. Vol. 8(9), рр. 1526–1533. DOI:10. 1017/S1751731114001219.
  39. Bjerg, B., Brandt, P., Pedersen, P., Zhang, G. (2020). Sows' responses to increased heatload – A review. J. Therm. Biol. Vol. 94, рр. 1027–1058. DOI:10.1016/j.jtherbio.2020.102758.
  40. Iida, R., Koketsu, Y. (2014). Interactions between pre- or postservice climatic factors, parity, and weaning-tofirst-mating interval for total number of pigs born of female pigs serviced during hot and humid or cold seasons. J. Anim. Sci. Vol. 92 (9), рр. 4180–4188. DOI:10.2527/jas.2014-7636.
  41. Iida, R., Koketsu, Y. (2014). Climatic factors associated with peripartum pig deaths during hot and humid or cold seasons. Prev. Vet. Med. Vol. 1, 115 (3–4), рр. 166–172. DOI:10.1016/j.prevetmed. 2014.03.019.
  42. Gourdine, J., Mandonnet, N., Giorgi, M., Renaudeau, D. (2017). Genetic parameters for thermoregulation and production traits in lactating sows reared in tropical climate. Animal. Vol. 3, рр. 365–374. DOI:10.1017/S175173111600135X.
AttachmentSize
PDF icon poroshinska_2_2021.pdf428.12 KB