You are here
Coagulase-positive staphylococci in dogs and their antimicrobial resistance (systematic review)
Staphylococcus spp. a common genus of bacteria that colonizes the body of dogs. Some families of this genus are pathogenic and are involved in the development of diseases of various systems and organs, especially the skin and outer ear. One of the main signs of the most pathogenic families of this genus is the secretion of the enzyme coagulase. They are grouped into the group of coagulase-positive Staphylococcus (CoPS). S. pseudintermedius most often is isolated from a dog, about 10-60% isolates. S. aureus is identified less frequently, in 4-15% of cases, but it is associated with people who are its natural carriers. S. schleiferi subsp. coagulans is another family that can be identified in the pathological material obtained from dogs. However, coagulase is one of much different pathogenicity factors in this family. Also, microorganisms of this family can exist both in the form of a planktonic culture and in the structure of a biofilm, on which the effect of antibacterial agents is weakened. Some strain of CoPS carry genes of resistance to various antibacterial agents and may occupy a dominant position in the pathogenic process. Such strains can colonize the environment in places where animals congregate, which leads, for example, to the occurrence of clinical infections. Also resistant are strains of this family that can colonize other animals or humans. Owners and specialists working with animals are constantly at risk. To date, the issue of the emergence of resistance to beta-lactam antibiotics (methicelin-resistant strains) and the acquisition of resistance to several groups of antibacterial agents is acute. In the countries of the European Union, a fairly large number of studies are conducted aimed at studying the spread of Staphylococcus spp. analysis of virulence and pathogenicity factors, as well as mechanisms of acquiring antibacterial resistance. Programs to control the prevalence of resistant strains are also being developed there. Different authors show resistance to a large number of antibacterial agents, the profile of antibacterial resistance may differ both within different groups and between different drugs of the same pharmaceutical group. In Ukraine, there are no systematic studies of the spread of resistant strains of microorganisms among small animals.
Key words: Staphylococcus spp., S. pseudintermedius, S. aureus, S. schleiferi subsp. Coagulans, CoPS, MRSP, MRSA, antibacterial resistance, dogs.
- Corbera, J. A., Suárez-Bonnet, A. et al. (2020). Virulence factors in coagulase-positive staphylococci of veterinary interest other than Staphylococcus aureus. Veterinary Quarterly. Vol. 40, no. 1, pp. 118–131. Doi:10.108 0/01652176.2020.1748253
- Hanselman, B. A., Kruth, S. A., Rousseau, J. (2009). Coagulase positive staphylococcal colonization of humans and their household pets. The Canadian veterinary journal = La revue veterinaire canadienne. Vol. 50, no. 9, pp. 954–958. Doi:10.1097/00152193-198906000-00015
- Ross Fitzgerald, J. (2009). The Staphylococcus intermedius group of bacterial pathogens: Species reclassification, pathogenesis and the emergence of meticillin resistance. Veterinary Dermatology. Vol. 20, no. 5–6, pp. 490–495. Doit:10.1111/j.1365-3164.2009.00828.x
- Haag, A. F., Fitzgerald, J. R., Penadés, J. R. (2019). Staphylococcus aureus in Animals. Microbiology Spectrum. Vol. 7, no. 3, pp. 1–19. Doi:10.1128/microbiolspec.gpp3- 0060-2019
- Pendleton, J. N., Gorman, S. P., Gilmore, B. F. (2013). Clinical relevance of the ESKAPE pathogens. Expert Review of Anti-infective Therapy. Vol. 11, no. 3, pp. 297–308. Doi:10.1586/eri.13.12
- Krapf, M., Müller, E., Reissig, A. et al. Molecular characterisation of methicillin-resistant Staphylococcus pseudintermedius from dogs and the description of their SCCmec elements. Veterinary Microbiology. 2019. Vol. 233, No. April. pp. 196–203. Doi:10.1016/j.vetmic.2019.04.002
- Walther, B., Tedin, K., Lübke-Becker, A. (2017). Multidrug-resistant opportunistic pathogens challenging veterinary infection control. Veterinary Microbiology. Vol. 200, pp. 71–78. Doi:10.1016/j.vetmic.2016.05.017
- Gupta, S., Rajiah, P., Middlebrooks, E. H. (2018). Systematic Review of the Literature: Best Practices. Academic Radiology. Vol. 25, no. 11, pp. 1481–1490. Doi:10.1016/j. acra.2018.04.025
- Velizarova Rusenova, N., Georgiev Rusenov, A. (2017). Detection of staphylococcus aureus among coagulase positive staphylococci from animal origin based on conventional and molecular methods. Macedonian Veterinary Review. Vol. 40, no. 1, pp. 29–36. Doi:10.1515/ macvetrev-2016-0095
- Ulrich, S., Gottschalk, C., Straubinger, R. K. (2020). Acceleration of the identification of sepsis-inducing bacteria in cultures of dog and cat blood. Journal of Small Animal Practice. Vol. 61, no. 1, pp. 42–45. Available at:10.1111/jsap.13056
- Balbutskaya, A. A., Dmilrenko, O. A., Skvortsov, V. N. (2017). Sovremennye osobennosti vidovoj identifikacii koagulazopolozhitel'nyh bakterij roda Staphylococcus [Modern features of species identification of coagulasepositive bacteria of the genus Staphylococcus]. Klinicheskaja laboratornaja diagnostika [Clinical laboratory diagnostics]. Vol. 62, no. 8, pp. 497–502. Doi:10.18821/0869-2084-2017- 62-8-497-502
- Verstappen, K. M., Huijbregts, L., Spaninks, M. (2017). Development of a real-time PCR for detection of Staphylococcus pseudintermedius using a novel automated comparison of whole-genome sequences. PLoS ONE. Vol. 12, no. 8. Doi:10.1371/journal.pone.0183925
- Peretyatko, O., Yagnuk, Y., Pakhomov, A., Sklyar, N., Krestetska, S., Bolshakova, G., Cholodna, T., Markovich, I., Kalinichenko, S., Panchenko, L. (2019). The effects of cryopreservation conditions on viability of escherichia and staphylococcus genus. Annals of Mechnikov Institute. Vol. 4, pp. 36–41. Doi:10.5281/zenodo.3572511
- Ngo, J., Taminiau, B., Fall, P. A. (2018). Ear canal microbiota – a comparison between healthy dogs and atopic dogs without clinical signs of otitis externa. Veterinary Dermatology. Vol. 29, no. 5, pp. 425-e140. Doi:10.1111/ vde.12674
- Martino, L. De, Nocera, F. P., Mallardo, K. (2016). An update on microbiological causes of canine otitis externa in Campania Region, Italy. Asian Pacific Journal of Tropical Biomedicine. Vol. 6, no. 5, pp. 384–389. Doi:10.1016/j. apjtb.2015.11.012
- Ventrella, G., Moodley, A., Grandolfo, E. (2017). Frequency, antimicrobial susceptibility and clonal distribution of methicillin-resistant Staphylococcus pseudintermedius in canine clinical samples submitted to a veterinary diagnostic laboratory in Italy: A 3-year retrospective investigation. Veterinary Microbiology. Vol. 211, No. June, pp. 103–106. Doi:10.1016/j.vetmic.2017.09.015
- Bourély, C., Cazeau, G., Jarrige, N. (2019). Antimicrobial resistance patterns of bacteria isolated from dogs with otitis. Epidemiology and Infection. Vol. 147, 121 p. Doi:10.1017/S0950268818003278
- Menandro, M. L., Dotto, G., Mondin, A. (2019). Prevalence and characterization of methicillin-resistant Staphylococcus pseudintermedius from symptomatic companion animals in Northern Italy: Clonal diversity and novel sequence types. Comparative Immunology, Microbiology and Infectious Diseases. Vol. 66, No. June, 101331 p. Doi:10.1016/j.cimid.2019.101331
- Ludwig, C., Jong, A. de, Moyaert, H. (2016). Antimicrobial susceptibility monitoring of dermatological bacterial pathogens isolated from diseased dogs and cats across Europe (ComPath results). Journal of Applied Microbiology. Vol. 121, no. 5, pp. 1254–1267. Doi:10.1111/jam.13287
- Schmidt, V. M., Pinchbeck, G., Nuttall, T. (2018). Impact of systemic antimicrobial therapy on mucosal staphylococci in a population of dogs in Northwest England. Veterinary Dermatology. Vol. 29, no. 3, pp. 192-e70. Doi:10.1111/vde.12538
- Milne, E., Nuttall, T., Marioni-Henry, K. (2020). Cytological and microbiological characteristics of middle ear effusions in brachycephalic dogs. Journal of Veterinary Internal Medicine. Vol. 34, no. 4, pp. 1454–1463. Doi:10.1111/ jvim.15792
- Morrissey, I., Moyaert, H., Jong, A. de. (2016). Antimicrobial susceptibility monitoring of bacterial pathogens isolated from respiratory tract infections in dogs and cats across Europe: ComPath results. Veterinary Microbiology. Vol. 191, pp. 44–51. Doi:10.1016/j.vetmic.2016.05.020
- Moyaert, H., Jong, A., Simjee, S. (2019). Survey of antimicrobial susceptibility of bacterial pathogens isolated from dogs and cats with respiratory tract infections in Europe: ComPath results. Journal of Applied Microbiology. Vol. 127, no. 1, pp. 29–46. Doi:10.1111/jam.14274
- Tress, B., Dorn, E. S., Suchodolski, J. S. (2017). Bacterial microbiome of the nose of healthy dogs and dogs with nasal disease. PLOS ONE. Vol. 12, no. 5, e0176736 p. Doi:10.1371/journal.pone.0176736
- Soimala, T., Lübke-Becker, A., Hanke, D. (2020). Molecular and phenotypic characterization of methicillinresistant Staphylococcus pseudintermedius from ocular surfaces of dogs and cats suffering from ophthalmological diseases. Veterinary Microbiology. Vol. 244, No. April, 108687 p. Doi:10.1016/j.vetmic.2020.108687
- Moyaert, H., Morrissey, I., Jong, A. De. (2017). Antimicrobial susceptibility monitoring of bacterial pathogens isolated from urinary tract infections in dogs and cats across Europe: ComPath results. Microbial Drug Resistance. Vol. 23, no. 3, pp. 391–403. Doi:10.1089/mdr.2016.0110
- Duim, B., Verstappen, K. M., Broens, E. M. (2016). Changes in the population of methicillin-resistant Staphylococcus pseudintermedius and dissemination of antimicrobial-resistant phenotypes in the Netherlands. Journal of Clinical Microbiology. Vol. 54, no. 2, pp. 283–288. Doi:10.1128/JCM.01288-15
- Ortiz-Díez, G., López, R., Sánchez-Díaz, A. M. (2020). Epidemiology of the colonization and acquisition of methicillin-resistant staphylococci and vancomycin-resistant enterococci in dogs hospitalized in a clinic veterinary hospital in Spain. Comparative Immunology, Microbiology and Infectious Diseases. Vol. 72, no. January, 101501 p. Doi:10.1016/j.cimid.2020.101501
- Drougka, E., Foka, A., Koutinas, C. K. (2016). Interspecies spread of Staphylococcus aureus clones among companion animals and human close contacts in a veterinary teaching hospital. A cross-sectional study in Greece. Preventive Veterinary Medicine. Vol. 126, pp. 190–198. Doi:10.1016/j.prevetmed.2016.02.004
- Feller, A. T., Schuenemann, R., Kadlec, K. (2018). Methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus pseudintermedius (MRSP) among employees and in the environment of a small animal hospital. Veterinary Microbiology. Vol. 221, pp. 153– 158. Doi:10.1016/j.vetmic.2018.06.001
- Perondi, F., Petrescu, V., Fratini, F. (2020). Bacterial colonization of non-permanent central venous catheters in hemodialysis dogs. Heliyon. Vol. 6, no. 1, e03224. Doi:10.1016/j.heliyon.2020.e03224
- Corrò, M., Skarin, J., Börjesson, S. (2018). Occurrence and characterization of methicillin-resistant Staphylococcus pseudintermedius in successive parturitions of bitches and their puppies in two kennels in Italy. BMC Veterinary Research. 2018. Vol. 14, no. 1, pp. 1–8. Doi:10.1186/s12917- 018-1612-z
- Windahl, U., Ågren, J., Holst, B. S. (2016). Colonization with methicillin-resistant Staphylococcus pseudintermedius in multi-dog households : A longitudinal study using whole genome sequencing. Veterinary Microbiology. Vol. 189, pp. 8–14. Doi:10.1016/j.vetmic.2016.04.010
- Lozano, C., Rezusta, A., Ferrer, I. (2017). Staphylococcus pseudintermedius Human Infection Cases in Spain: Dog-to-Human Transmission. Vector-Borne and Zoonotic Diseases. Vol. 17, no. 4, pp. 268–270. Doi:10.1089/vbz.2016.2048
- Hritcu, O. M., Schmidt, V. M., Salem, S. E. (2020). Geographical Variations in Virulence Factors and Antimicrobial Resistance Amongst Staphylococci Isolated From Dogs From the United Kingdom and Romania. Frontiers in Veterinary Science. Vol. 7, No. July, pp. 1–10. Doi:10.3389/fvets.2020.00414
- Haenni, M., Châtre, P., Dupieux-Chabert, C. (2017). Molecular epidemiology of methicillin-resistant staphylococcus aureus in horses, cats, and dogs over a 5-year period in France. Frontiers in Microbiology. Vol. 8, No. DEC, pp. 1–8. Doi:10.3389/fmicb.2017.02493
- Maali, Y., Badiou, C., Martins-Simões, P. (2018). Understanding the virulence of Staphylococcus pseudintermedius: A major role of pore-forming toxins. Frontiers in Cellular and Infection Microbiology. Vol. 8, No. JUN, pp. 1–10. Doi:10.3389/fcimb.2018.00221
- Krogh, A. K. H., Haaber, J., Bochsen, L. (2018). Aggregating resistant Staphylococcus aureus induces hypocoagulability, hyperfibrinolysis, phagocytosis, and neutrophil, monocyte, and lymphocyte binding in canine whole blood. Veterinary Clinical Pathology. Vol. 47, no. 4, pp. 560–574. Doi:10.1111/vcp.12679
- Hensel, N., Zabel, S., Hensel, P. (2016). Prior antibacterial drug exposure in dogs with meticillin-resistant Staphylococcus pseudintermedius (MRSP) pyoderma. Veterinary Dermatology. Vol. 27, no. 2, pp. 72-e20. Doi:10.1111/vde.12292
- Bergot, M., Martins-Simoes, P., Kilian, H. (2018). Evolution of the Population Structure of Staphylococcus pseudintermedius in France. Frontiers in Microbiology. Vol. 9, No. DEC, pp. 1–10. Doi:10.3389/fmicb.2018.03055
- Larsen, R. F., Boysen, L., Jessen, L. R. (2018). Diversity of Staphylococcus pseudintermedius in carriage sites and skin lesions of dogs with superficial bacterial folliculitis: potential implications for diagnostic testing and therapy. Veterinary Dermatology. Vol. 29, no. 4, pp. 291-e100. Doi:10.1111/vde.12549
- Jong, A. de, Youala, M., Garch, F. El. (2020). Antimicrobial susceptibility monitoring of canine and feline skin and ear pathogens isolated from European veterinary clinics: results of the ComPath Surveillance programme. Veterinary Dermatology. Vol. 31, no. 6, pp. 431-e114. Doi:10.1111/vde.12886
- Kaspar, U., Lützau, A. von, Schlattmann, A. (2018). Zoonotic multidrug-resistant microorganisms among small companion animals in Germany. PLOS ONE. Vol. 13, no. 12, e0208364. Doi:10.1371/journal.pone.0208364
- Kizerwetter-Świda, M., Chrobak-Chmiel, D., Rzewuska, M. (2016). Resistance of canine methicillinresistant Staphylococcus pseudintermedius strains to pradofloxacin. Journal of Veterinary Diagnostic Investigation. Vol. 28, no. 5, pp. 514–518. Doi: 10.1177/1040638716660131
- Kizerwetter-Świda, M., Chrobak-Chmiel, D., Rzewuska, M. (2019). High-level mupirocin resistance in methicillin-resistant staphylococci isolated from dogs and cats. BMC Veterinary Research. Vol. 15, no. 1, 238 p. Doi:10.1186/s12917-019-1973-y
- Brochmann, R. P., Helmfrid, A., Jana, B. (2016). Antimicrobial synergy between carprofen and doxycycline against methicillinresistant Staphylococcus pseudintermedius. BMC Veterinary Research. pp. 1–8. Doi:10.1186/s12917-016-0751-3
- Ferran, A. A., Liu, J. J., Toutain, P. L. (2016). Comparison of the in vitro activity of five antimicrobial drugs against staphylococcus pseudintermedius and staphylococcus aureus biofilms. Frontiers in Microbiology. Vol. 7, No. AUG, pp. 1–8. Doi:10.3389/fmicb.2016.01187
- Garkavenko, T. O., Gorbatyuk, O. I., Kozytska, T. G. (2020). Study of the ability of S. aureus field isolates selected from raw materials and livestock products to form biofilms. Bulletin “Veterinary biotechnology.” Vol. 37, pp. 20–30. Doi:10.31073/vet_biotech37-02
- Garkavenko, T. A., Kozytska, T. G., Gorbatyuk, O. I. (2019). Vyvchennja stijkosti antybiotykorezystentnyh shtamiv S. aureus do dezinfikujuchyh zasobiv z riznymy dijuchymy rechovynamy. [Study of resistance of antibioticresistant strains of S. aureus to disinfectants with different active substances]. Scientific and Technical Bulletin оf State Scientific Research Control Institute of Veterinary Medical Products and Fodder Additives аnd Institute of Animal Biology. Vol. 20, no. 2, pp. 183–193. Doi:10.36359/scivp.2019-20-2.24
- Churkina, L. N., Klochko, V. V., Zagorodnya, S.D., Yaroshenko, L. V., Luitko, O. B. (2018). Peculiarities of antibiotic batumin action on biofilm formation by Staphylococcus aureus and Pseudomonas batumici. Biotechnologia Acta. Vol. 11, no. 2, pp. 72–78. Doi:Doi.org/10.15407/biotech11.02.072
- Nolff, M. C., Reese, S., Fehr, M. (2016). Assessment of wound bio-burden and prevalence of multi-drug resistant bacteria during open wound management. Journal of Small Animal Practice. Vol. 57, no. 5, pp. 255–259. Doi:10.1111/ jsap.12476
- Babkina, M. M., Vasyl'chenko, O. V., Derjabin, O. M. (2018). Antybakterial'na aktyvnist' modyfikovanyh geterocyklichnyh spoluk klasu zamishhenyh akrydoniv stosovno Staphylococcus aureus [Antibacterial activity of modified heterocyclic compounds of the class of substituted acridones against Staphylococcus aureus]. The Animal Biology. Vol. 20, no. 1, pp. 9–15. Doi:10.15407/ animbiol20.01.009
- Virych, P. A., Nadtoka, O. M., Virych, P. A. (2019). Fotoinaktyvacija in vitro Staphylococcus aureus chervonym svitlom (660 nm) u prysutnosti metylenovogo syn'ogo [In vitro photoinactivation of Staphylococcus aureus by red light (660 nm) in the presence of methylene blue]. Photobiology and Photomedicine. no. 28, pp. 65–73. Doi:10.26565/2076-0612-2019-28-07
- Pantyo, V.V., Koval, G.M., Pantyo, VI. (2017). Vplyv svitlodiodnogo vyprominjuvannja riznyh dovzhyn hvyl' na intensyvnist' rostu Staphylococcus aureus [Influence of LED radiation of different wavelengths on the growth intensity of Staphylococcus aureus]. Science Rise: Biological Science. no. 4 (7), pp. 16–20. Doi:10.15587/2519-8025.2017.109244
- Nemyrovska, L. M., Skachkova, N. K. (2016). Vplyv probiotykivna rostovi ta patogenni vlastyvosti klinichnyh shtamiv rodu Staphylococcus v eksperymenti in vitro [Influence of probiotics on growth and pathogenic properties of clinical strains of the genus Staphylococcus in an in vitro experiment]. Gematologija i perelyvannja krovi: mizhvidomchyj zbirnyk [Hematology and blood transfusion: an interdepartmental collection]. pp. 150–163. Doi:10.33741/0435-1991.40.13
- Kryvtsova, M., Koščová, J. (2020). Antibiofilmforming and antimicrobial activity of extracts Of Arnica montana L., Achillea millefolium L. on Staphylococcus genus bacteria. Biotechnologia Acta. Vol. 13, no. 1, pp. 30– 37. Doi:10.15407/biotech13.01.030030
- Kryvtsova, M. V., Fedkiv, O. K., Hrytsyna, M. R. (2020). Anty-microbial, and anty-biofilm-forming properties of Origanum vulgare L. essential oils on Staphylococcus aureus and its antioxidant action. Studia Biologica. Vol. 14, no. 2, pp. 27–38. Doi:10.30970/sbi.1402.621
- Tkachenko, H., Kurhaluk, N., Buyun, L. (2020). In vitro screening for antimicrobial potential of ethanolic leaf extracts of some begonia species against methicillin-resistant Staphylococcus aureus (MRSA) strain. The Scientific and Technical Bulletin of the Institute of Animal Science NAAS of Ukraine. no. 123, pp. 30–38. Doi:10.32900/2312-8402- 2020-123-30-38
- Zazharskyi, V. V., Davydenko, P. O., Kulishenko, O. M. (2019). Effect of ethanol plant extracts on Staphylococcus Epidermidis, Staphylococcus Aureus. Scientific and Technical Bulletin оf State Scientific Research Control Institute of Veterinary Medical Products and Fodder Additives аnd Institute of Animal Biology. Vol. 20, no. 2, pp. 154–161. Doi:10.36359/scivp.2019-20-2.20
- Wu, M. T., Burnham, C.-A. D., Westblade, L. F. (2016). Evaluation of Oxacillin and Cefoxitin Disk and MIC Breakpoints for Prediction of Methicillin Resistance in Human and Veterinary Isolates of Staphylococcus intermedius Group. Journal of Clinical Microbiology. Vol. 54, no. 3, pp. 535–542. Doi:10.1128/JCM.02864-15
- Martineau, F., Picard, O. I. S. J., Lansac, N. (2000). Correlation between the Resistance Genotype Determined by Multiplex PCR Assays and the Antibiotic Susceptibility Patterns of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrobial Agents and Chemotherapy. Vol. 44, no. 2, pp. 231–238. Doi:10.1128 / aac.44.2.231-238.2000
- Damborg, P., Moodley, A., Aalbæk, B. (2016). High genotypic diversity among methicillin- resistant Staphylococcus pseudintermedius isolated from canine infections in Denmark. BMC Veterinary Research. pp. 1–5. Doi:10.1186/s12917-016-0756-y
Attachment | Size |
---|---|
shevchenko_1_2021.pdf | 558.57 KB |