You are here

Comparative morphofunctional and species-specific vascularization features of of the knee capsule of some mammals

The metabolic, reparative and plastic properties, as well as the functional activity of the multiorgan synovial environment of the knee joint, are organically and functionally related to their morphology and blood supply. The aim of our research was to determine the general biological and specific features of the structural organization and vascularization of the knee joint capsule in animals with different supports, locomotion and body weight. A complex of morphological research methods is used in this work: anatomical, histological, neurohistological. Used neurohistological method of impregnation in its own algorithm. The structural organization of synovial and fibrous capsule, histotopography of intraorganic vessels was studied on 43 objects of various groups of animals. The selection of animals was carried out according to the type of limb specialization to the substrate. Animals were  taking into account the ecology, types of support, the nature of locomotion and the speed of movement – phalanoid animals – a domestic horse, a domestic bull and a finger animal – a domestic dog and a domestic cat. As a result of the complex comparative-morphological study the general patterns of the structural organization of the articular capsule, the general-biological and species-specific features of the angioarchitectonics and angiotopography were established. The zones of the most intense intraorganic vascularization and the topography of the vascular fields and glomeruli of the articular capsule are shown. The zones of intensive vascularization are localized: in the domestic bull – in the medial, dorsal, lateral parts, vascular glomeruli – in the lateral; in the domestic horse – in all parts of the capsule, vascular glomeruli – in the plantar area; in the domestic dog – in the medial, dorsal, plantar parts, vascular glomeruli – in the plantar area; in a domestic cat, the same type of angioarchitectonics is observed, the vascular fields and glomeruli are absent. The more intense angioarhitectonics in the capsule of the knee joint in phalanoid animals (horse, cattle) than in the finger (dog, cat) possibly due to the different nature of the support and type of locomotion, is determined.

Key words: vascular fields, vascular glomeruli, angioarсhitectonics, knee joint, joint capsule, domestic horse, domestic bull, domestic dog, domestic cat.

  1. Kapitonova, M. YU. (1999). Ul'trastrukturnaya kharakteristika sinovial'noy sredy sustavov v norme i pri Nekotorykh zabolevaniyakh: avtoref. dis. … d-ra med. nauk: 14.03.09 [The ultrastructural characteristic of the synovial environment of the joints is normal and in some diseases: abstract of the dissertation of the doctor of medical sciences: 14.03.09.]. Moscow, 28 p.
  2. Torba, A. I. (2003). Morfofunkcional'naja harakteristika komponentov kolennogo sustava u sobak v norme i v uslovijah hirurgicheskoj korrekcii povrezhdenij svjazochnogo apparata: jeksperimental'no-morfologicheskoe issledovanie: avtoref. dis. … d-ra vet. nauk: 16.00.02, 16.00.05. [Morphological and functional characteristics of the components of the knee joint in dogs are normal and in the conditions of surgical correction of damage to the ligamentous apparatus: experimental-morphological research: abstract of the dissertation of the doctor of veterinary sciences: 16.00.02, 16.00.05.]. Moscow, 35 p.
  3. Walsh, D.A., Catravas, J., Wharto, J. (2000). Angiotensin converting enzyrne in human synovium: increased stromal a binding in rheumatoid arthritis. Ann. Rheum. Dis. no. 59, pp. 125–131.
  4. Blinova, Ye.N. (1991). Vliyaniye narusheniy perifericheskoy innervatsii na strukturnuyu organizatsiyu krupnykh sustavov: (eksperimental'no-morfologicheskoye issledovaniye): dis… kand.biol. nauk: 03.00.11 [The influence of peripheral innervation disorders on the structural organization of large joints: (experimental-morphological study): the dissertation of the candidate of biological sciences: 03.00.11.].  Kyiv, 171 p.
  5. Bondarenko, N.M. (2004). Reaktyvnistʹ spoluchnykhtkanynsuhlobiv: avtoref. dys. nazdobuttyanauk. stupenyad-ramed. nauk: 14.03.09 “histolohiya, tsytolohiya, embriolohiya”. Nats. med. un-tim. O.O.Bohomolʹtsya [Reactivity of connective tissues of joints: abstract. the dissertation of the doctor of medical sciences: 14.03.09 / Bogomolets National Medical University].  Kyiv, 36 p.
  6. Neogi, T. (2013). The epidemiology and impact of pain in osteoarthritis. Osteoarthritis Cartilage. Vol. 21(9), pp. 1145–1153. Available at:https://doi.org/ 10.1016/j.joca.2013.03.018.
  7. Kraus, V.B., Blanco, F.J., Englund, M., Karsdal, M.A., Lohmander, L.S. (2015). Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use. Osteoarthritis Cartilage. Vol. 23(8), pp. 1233–1241. Available at:https://doi.org/ 10.1016/j.joca.2015.03.036.
  8. Ashraf, S., Walsh, D.A. (2008). Angiogenesis in osteoarthritis. Current Opinion in Rheumatology. no. 20(5), pp. 573–580.
  9. MacDonald, I.J., Liu, S.C., Su, C.M., Wang, Y.H., Tsai, C.H., Tang, C.H. (2018). Implications of Angiogenesis Involvement in Arthritis.  Int J Mol Sci. Jul. Vol. 19(7),  2012 p. Available at:https://doi.org/ 10.3390/ijms19072012PMCID: PMC6073145PMID: 29996499
  10. McInnes, I.B., Schett, G. (2011). The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. Vol. 365, pp. 2205–2219. Available at:https://doi.org/ 10.1056/NEJMra1004965.
  11. Merkulov, G.A. (1961). Kurs patologogistologicheskoy tekhniki [The pathological pathology technique]. Leningrad: Medgiz, 343 p.
  12. Novak, V.P., Bevz, O.S., Melʹnychenko, A.P., Kharchyshyn, V.M., Melʹnychenko, Yu.O. Sposib imprehnatsiyi nitratom sribla zamorozhenykh zriziv dlya vyyavlennya struktur peryferychnoyi nervovoyi systemy: Patent №135108 10.06.2019 byul. № 11 [Sposіb іmpregnatsії nіtrat srіbla frozen zrіzіv to reveal the structures of the peripheral nervous system: Patent number 135108 06/10/2019, Byul. No. 11].
  13. Bleedorn, J.A., Greuel, E.N., Manley, P.A., Schaefer, S.L., Markel, M.D., Holzman, G. (2011). Synovitis in dogs with stable stifle joints and incipient cranial cruciate ligament rupture: a cross-sectional study. Vet Surg. Vol. 40, pp. 531–543. Available at:https://doi.org/10.1111/j.1532-950X.2011.00841.x
  14. Little, J.P., Bleedorn, J.A., Sutherland, B.J., Sullivan, R., Kalscheur, V.L., Ramaker, M.A. (2014). Arthroscopic assessment of stifle synovitis in dogs with cranial cruciate ligament rupture. PLoS ONE. Vol. 9. Available at:https://doi.org/ e97329 10.1371/journal.pone.0097329
  15. Novak, V.P., Mel'nychenko, A.P., Bevz, O.S. (2012). Morfofunkcional'ni osoblyvosti spoluchnotkanynnyh elementiv lokomotornogo aparatu svijs'kyh konej [Morphofunctional features of connective tissue elements of locomotor apparatus of domestic horses]. Naukovyj visnyk Lugans'kogo NAU [Scientific herald of Lugansk NAU]. Series Veterinary Science. Lugansk: Elton-2, no. 40, pp. 134–138.
  16. Quinn, M. Structures of a synovial joint. October. 2018. Available at: https://teachmeanatomy.info/the-basics/joints-basic/synovial-joint/
  17. Mateos, J., Lourido, L., Fernández-Puente, P., Calamia, V., Fernández-López, C., Oreiro, N. (2012). Differential protein profiling of synovial fluid from rheumatoid arthritis and osteoarthritis patients using LC–MALDI TOF/TOF. J. Proteomics. Vol. 75, pp. 2869–2878.
  18. Scanzello, C.R., Goldring, S.R. (2012). The role of synovitis in osteoarthritis pathogenesis. Bone. Vol. 51(2), pp. 249–257. Available at:https://doi.org/  10.1016/j.bone.2012.02.012. 
  19. Hui, A.Y., McCarty, W.J., Masuda, K., Firestein, G.S., Sah, R.L. (2012). A systems biology approach to synovial joint lubrication in health, injury, and disease. Wiley Interdiscip. Rev.: Syst. Biol. Med. Vol. 4, pp. 15–37.
  20. Smith, M.D. (2011). The normal synovium. Open Rheumatol J. Vol. 5, pp. 100–106. Available at:https://doi.org/ 10.2174/1874312901105010100.
  21. de Sousa, E.B., Casado, P.L., Moura Neto, V., Duarte, M.E., Aguiar, D.P. (2014). Synovial fluid and synovial membrane mesenchymal stem cells: latest discoveries and therapeutic perspectives. Stem Cell Res Ther. Vol. 5(5), 112 p. Available at:https://doi.org/ 10.1186/scrt501.
  22. Jay, G.D., Waller, K.A. (2014). The biology of Lubricin: near frictionless joint motion. Matrix Biol. Vol. 39, pp. 17–24. Available at:https://doi.org/ 10.1016/j.matbio.2014.08.008.
  23. Novak, V.P., Bevz, O.S., Nechyporuk, Je.V. (2017). Porivnjal'na angioarhitektonika kapsuly kolinnogo i tarsal'nogo suglobiv svijs'kogo byka [Comparative angioarhitectonics of the capsule of the knee and tarsal joints of the domestic bull]. Bulletin of ZNAMEU. Vol. 3,  no. 1 (60),  pp. 120–124.
  24. Petrenko, V.M. (2017). Setevidnaya mikrotsirkulyatsiya [Net microcirculation]. M. Berlin: Direct Media. 94 p.
AttachmentSize
PDF icon novak_1_2019.pdf6.88 MB