You are here

Dynamics of biochemical bone and endothelial parameters during the replacement of bone defects in dogs with hydroxyapatite ceramic doped with silicon

Metal structures for osteosynthesis available in veterinary orthopedics are not able to compensate for the lost elements of bone tissue in complex splinter fractures. It is prompt the use of hydroxyappatite materials that replaced bone defects for maintenance of osteoconductive function, and ideally would combine osteointegration and osteoinductive properties. However, their influence on the biological processes of fracture consolidation which go through a number of successive stages and end with the formation of bone tissue in the fracture zone identical to the maternal, is insufficiently substantiated according to the criteria of the molecular biological phase of reparative osteogenesis. The aim of the study was to investigate the dynamics of biochemical osteotropic parameters and the level of NO using silicon-doped ceramics for fractures heeling in dogs. Materials and methods. The animals suffering of fractures that were admitted to the faculty clinic were divided into control (n=7) and experimental (n=7) groups. In both groups, extracortical osteosynthesis was performed with a support plate from an unalloyed titanium alloy. In the control group, bone defects were left to heal under spontaneous blood clot, and in the experimental group, they were replaced with ceramic based on hydroxyapatite with β-tricalciumphosphate doped with silicon (HA/β-TCP/l-Si–3).Blood samples were taken after the injury no later than the 48th day, and on the 3th, 12th, 21th, 42th and 60th days after osteosynthesis. To increase the objectivity of the biochemical analysis, we additionally formed a group of clinically healthy dogs that were admitted to the clinic for routine vaccination (n=10). It included the spectrophotometric determination of the content of NO, BALP, TRACP, Ca, P, Mg, total protein in blood serum, and fibrinogen in blood plasma. Research results. A clinical study showed that in the case of using HA/β-TCP/l-Si–3for splinter fractures, the stages of reparative osteogenesis are more optimized in time, and their consolidation occurs on average 19 days earlier than in the control group. The results of the biochemical study showed that when using HA/β-TCP/l-Si–3, it is accompanied by a peak NO value already on the third day, which is significantly higher than in the control group and indicates early angiogenesis in the research group. In terms of TRACP, the period of osteoresorption in the control group was permanent with little expressed peaks of activity. However, in the research group, the peak of TRACP activity is limited to 12 and 21 days, which is evidence of an optimized inflammatoryresorptive phase. In parallel with this, the activity of BALP increases, which indicates the consistency of the stages of reparative osteogenesis and provides an optimized and accelerated consolidation of fractures in the research group. Conclusion. The dynamics of NO, BALP and TRACP pathochemically substantiates the optimized reparative osteogenesis when using HA/β-TCP/l-Si–3 for bone defects replacement in cases of splinter fractures of tubular bones.

Key words: bone markers, bone isoenzyme of alkaline phosphatase, NO, tartrate-resistant acid phosphatase, fibrinogen, calcium, phosphorus.

  1. Rublenko, S.V., Yeroshenko, O.V. (2012). Monitorynh veterynarnoi dopomohy i struktura khirurhichnoi patolohii sered dribnykh domashnikh tvaryn v umovakh miskoi kliniky [Monitoring of veterinary care and the structure of surgical pathology among small pets in a city clinic]. Visnyk Sumskoho NAU [Bulletin of Sumy NAU]. Issue 1(30), pp. 150–154. Available at: vet_2012_1_44
  2. Fang, Y.A. (2018). Retrospective study of postoperative complications after fracture repair in dogs and cats, with focus on fractures in the radius and ulna. Faculty of Veterinary Medicine and Animal Science. pp. 1–35. Available at:
  3. Libardoni, R.N., Serafini, G.M., Oliveira, C., Schimite, P.I. (2016). Appendicular fractures of traumatic etiology in dogs: 955 cases (2004-2013). Ciência Rural. Vol. 3(46), pp. 36–48. Doi:10.1590/0103-8478cr20150219
  4. Raouf, M.A.E., Ezzeldein, S.A., Eisa, E.F.M. (2019). Bone fractures in dogs: A retrospective study of 129 dogs. Iraqi Journal of Veterinary Sciences. Vol. 33, no. 2, pp. 401– 405. Available at:
  5. Haaland, P.J., Sjstrm, L., Devor, M., Haug, A. (2009). Appendicular fracture repair in dogs using the locking compression plate system: 47 cases. Vet. Comp. Orthop Traumatol. Vol. 4, pp. 309–315. Doi:10.3415/VCOT08-05-0044
  6. Teliatnikov, A.V. (2013). Poshyrennia perelomiv kistok u sobak [Prevalence of bone fractures in dogs]. Naukovyi visnyk veterynarnoi medytsyny: zb. nauk. prats. [Scientific Bulletin of Veterinary Medicine: a collection of scientific papers]. Bila Tserkva, Issue 11 (101), pp. 149–153. Available at:
  7. Havrylenko, N.A., Sukhovolskyi, O.K. (2013). Ispol'zovanie metodiki vneshnej skeletnoj fiksacii v veterinarnoj kostnoj hirurgii raznymi tipami fiksatorov na spicah kirshnera [Using the technique of external skeletal fixation in veterinary bone surgery with different types of fixators on the Kirschner wires]. Voprosy normativnopravovogo regulirovanija v veterinarii [Questions of legal regulation in veterinary medicine]. no. 3, pp. 89–91.
  8. Santos, J.F., Ferrigno, C.R.A., Dal-Bó, I.S., Caquías, D.F.I. (2016). Nonunion fractures in small animals - A literature review Não união de fraturas em pequenos animais - Revisão de literature. Semina: Ciências Agrárias, Londrina, Vol. 37, no. 5, pp. 3223–3230. Doi:10.5433/1679- 0359.2016v37n5p3223
  9. Petersen, S.W., Déjardin, L.M., Ting, D. (2010). Bone transport osteogenesis for treatment of canine osteomyelitis. Veterinary and Comparative Orthopaedics and Traumatology. Vol. 23(2), pp. 134–140. Doi:10.3415/vcot-09-04-0049
  10. Oliveira, H.L., Wellington, L.O., Carlos, E.C., Neftali, L.V., Silva, A.S. (2017). Histological Evaluation of Bone Repair with Hydroxyapatite. Vol. 45(3), pp. 56–65. Doi:10.1007/s00223-017-0294-z
  11. Shumilova, A.A., Shishatskaya, E.I. (2014). Materials for Restoration of Bone Tissue. Journal of Siberian Federal University. Biology 2. no. 7, pp. 209–221. Available at:
  12. Kawai, T., Suzuki, O., Matsui, K., Tanuma, Y., Takahashi, T., Kamakura, S. (2017). Octacalcium phosphate collagen composite facilitates bone regeneration of large mandibular bone defect. Epub. Vol. 11(5), pp. 1641–1647 Doi:10.1002/term.2110.
  13. John, P.G., Fergal, J.O. (2011). Brien Composite Scaffolds for Orthopaedic Regenerative Medicine. Advances in Composite Materials for Medicine and Nanotechnology. Vol. 23(2), pp. 34–58. Doi:10.5772/15033
  14. Reznik, L.B., Erofeev, S.A., Stasenko, I.V., Borzunov, D.Y. (2019). Morphological assessment of osteointegration of various implants for management of long bone defects (experimental study). Genij Ortopedii. Vol. 25, no. 3, pp. 318–323. Doi:10.18019/1028-4427-2019-25-3-318-323.
  15. Ulianchych, N.V. (2021). Formuvannja vlastyvostej kal'cij-fosfatnoi' keramiky dlja regeneratyvnoi' medycyny: avtoref. dys. … kand. tehn. nauk: 05.02.01. [Formation of properties of calcium-phosphate ceramics for regenerative medicine: the dissertation of the candidate of technological sciences: 05.02.01.]. Kyiv, 27 p.
  16. Talashova, Y.A., Sylanteva, T.A., Kononovych, N.A., Luneva, S.N. (2012). Otsenka byosovmestymosty ymplantatsyonnkh kaltsyi-fosfatnkh materyalov v zavysymosty ot ykh myneralnoho sostava [Evaluation of the biocompatibility of implantation calcium-phosphate materials depending on their mineral composition]. Biulleten sybyrskoi medytsyn [Bulletin of Siberian Medicine]. no. 3, pp. 62–69. Available at: view/495
  17. Rublenko, M.V., Chemerovskiy, V.A., Andriiets, V.G., Ulyanchich, N.V., Kolomiets, V.V. (2020). Evaluation of usage of silicon-doped hydroxyapatite ceramics for treatment of fragmented bone fractures in dogs. Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies. Series: Veterinary sciences. Vol. 22(99), pp. 29–37. Doi:10.32718/nvlvet9905
  18. Rublenko, M.V., Dudka, V.B., Semeniak, S.A. (2015). Morfo-renthenolohichna i biokhimichna kharakterystyky reparatyvnoho osteohenezu za zamishchennia kistkovykh defektiv biominom-HT u tvaryn [Morpho-radiological and biochemical characteristics of reparative osteogenesis with replacement of bone defects by biomin-HT in animals]. Naukovyi visnyk veterynarnoi medytsyny [Scientific Bulletin of Veterinary Medicine]. Issue 99(1), pp. 98–106. Available at:
  19. Nakoskyn, A.N., Kovynka, M.A., Talashova, Y.A., Tushyna, V.N., Luneva, S.N. (2018). Byokhymycheskye markery osteoheneza y vospalenyia v svorotke krovy pry ksenoymplantatsyy [Biochemical markers of osteogenesis and inflammation in blood serum during xenoimplantation]. Medytsynskoi vestnyk severnoho Kavkaza [Medical Bulletin of the North Caucasus]. Issue 13(1), pp. 82–85. Doi:10.14300/mnnc.2018.13023
  20. Paskalev, M.D. (2010). Comparative investigation on blood bone markers in normally healing and infected bone fracture models in dogs. Bulgarian Journal of Veterinary Medicine. Vol. 4(13), pp. 235−244. Available at:http://tru. 244.pdf
  21. Shahanenko, V.S. (2012). Kliniko-patogenetychna rol' oksydu azotu ta korekcija jogo rivnja za hirurgichnoi' patologii' zapal'nogo g'enezu v tvaryn riznyh vydiv: avtoref. dys. … kand. vet. nauk: 16.00.05. [Clinical and pathogenetic role of nitric oxide and correction of its level in surgical pathology of inflammatory genesis in animals of different species: abstract of the dissertation of the candidate of veterinary sciences: 16.00.05.]. Bila Tserkva, 23 p.
  22. Yang, C., Hwang, H. H., Jeong, S., Seo, D., Jeong, Y., Lee, D. Y., Lee, K. (2018). Inducing angiogenesis with the controlled release of nitric oxide from biodegradable and biocompatible copolymeric nanoparticles. International Journal of Nanomedicine. Vol. 13, pp. 6517–6530. Doi:10.2147/ijn.s174989
  23. Grand, F., Guitton, J., Goudable, J. (2001). Optimization of the measurement of nitrite and nitrate in serum by the Griess reaction. Ann. Biol. Clin. Vol. 59, pp. 559–565. Available at:http://pubmed.ncbi.nlm.nih. gov/11602386/
  24. Holykov, P.P. (2004). Oksyd azota v klynyke neotlozhnkh zabolevanyi [Nitric oxide in the emergency clinic]. M.: ID Medpraktika, 180 p.
  25. Vahner, V.K., Putylyn, V.M., Kharabuha, H.H. (1981). Metody y rezultat yssledovanyia yzofermentov (kyshechnoi y pechenochnoi fraktsyi) svorotochnoi shchelochnoi fosfatazu pry ostrkh khyrurhycheskykh zabolevanyiakh orhanov briushnoi polosty [Methods and results of the study of isoenzymes (intestinal and hepatic fractions) of serum alkaline phosphatase in acute surgical diseases of the abdominal organs]. Vopr. med. Khymyy [Vopr. honey. chemistry]. Vol. 27, no. 6, pp. 752–754. Available at:
  26. Belytser, V.A., Varetskaia, T.V., Butulyn, Yu.P. (1983). Opredelenye soderzhanyia fybrynohena v plazme krovy [Determination of the content of fibrinogen in blood plasma]. Laboratornoe delo [Laboratory work]. no. 4, pp. 38–42.
  27. Korzh, N.A., Dedukh, N.V., Nykolchenko, O.A. (2006). Reparatyvnaia reheneratsyia kosty: sovremenni vzghliad na problem [Reparative bone regeneration: a modern perspective on the problem]. Systemne faktor, vlyiaiushchye na zazhyvlenye pereloma [Systemic factors affecting fracture healing]. Ortopedyia, travmatolohyia y protezyrovanye [Orthopedics, traumatology and prosthetics]. no. 2, pp. 93‒99
  28. Brusko, A.T., Haiko, H.V. (2014). Sovremenne predstavlenyia o stadyiakh reparatyvnoi reheneratsyy kostnoi tkany pry perelomakh [Modern concepts of the stages of reparative regeneration of bone tissue in fractures]. Visnyk ortopedii, travmatolohii ta protezuvannia [Bulletin of orthopedics, traumatology and prosthetics]. no. 2, pp. 5–8. Available at:
  29. Rublenko, M. V., Chemerovskіy, V. O., Vlasenko, V. M., Ulianchych, N. V. (2018). Otsinka osteointehratsiinykh i osteoinduktyvnykh vlastyvostei keramiky, lehovanoi kremniiem, za modelnykh perelomiv stehnovoi kistky u kroliv [Evaluation of osteointegration and osteoinductive properties of silicon-doped ceramics in model fractures of the femur in rabbits]. Naukovyi visnyk veterynarnoi medytsyny [Scientific Bulletin of Veterinary Medicine]. Issue 144(2), pp. 37–46. Doi: 10.33245/2310-4902-2018-144-2-37-46
  30. Mountziaris, P. M., Mikos, A. G. (2008). Modulation of the Inflammatory Response for Enhanced Bone Tissue Regeneration. Tissue Engineering Part B: Reviews. Vol. 14(2), pp. 179–186. Doi:10.1089/ten.teb.2008.0038
  31. Moskalets, A.Y., Bondaruk, O.S., Shcherbyna, O. V. (2012). Markery kostnoho metabolyzma y ykh rol v klynycheskoi praktyke [Bone metabolism markers and their role in clinical practice]. Laboratorna dyahnostyka [Laboratory diagnostics]. Issue 59(1), pp. 67–72. Available at:
  32. Sousa, C.P., Dias, I.R., Loperz, M., Camassa, J.A., Lourenco, P.J. (2015). Bone turnover markers for early detection of fracture healing disturbances: A review of the scientific literature. Anais da Academia Brasileira de Ciências. Vol. 87(2), pp. 1049–1061. Doi:10.1590/0001-3765201520150008
  33. Torbenko, V.P., Kasavyna, B.S. (1977). Funktsyonalnaia byokhymyia kostnoi tkany [Functional biochemistry of bone tissue]. Medytsyna [Medicine]. pp. 1–272. Available at: funktsionalnaya-biohimiya-kostnoj-tkani-bu
PDF icon rublenko_1_2021.pdf464.69 KB