You are here

Dynamics of hematological parameters and acute phase reactions for osteosubstitution by autofibrin and hydroxyapatite ceramics with β-tricalcium phosphate fragmentary bone fractures in dogs

Osteo-replacement materials are considered to be the most promising direction in solving the problem of restoring the regenerative potential of bone tissue, especially fragmentary fractures. However, the mechanism of their influence on the histomorphology of bone regenerates and the pathochemical phase of reparative osteogenesis require further and comprehensive justification. The aim of the study was to establish the dynamics of hematological parameters and acute phase response to osteosubstitution by hydroxyapatite ceramics with β-tricalcium phosphate and platelet-enriched autofibrin in fragmentary bone fractures in dogs. Control and research groups of animals were formed, each of which included dogs with fractures of both shoulder and forearm bones, which came in 2019- 2021 to the clinic of small pets of the Faculty of Veterinary Medicine of Bila Tserkva NAU. After general and local anesthesia, extracortical osteosynthesis and replacement of bone defects were performed: in the first experimental group (n = 10) autofibrin enriched with platelets (PRF), and in the second (n = 10) - its combination with hydroxyapatite ceramics (PRF + HA/β -TCP-700); in the control group (n = 10) the defects were left to heal under the blood clot. Blood samples for hematological and biochemical studies were taken after injury no later than 24 hours and on the 3rd, 7th, 14th, 21st and 42nd day after osteosynthesis. In peripheral blood, the number of erythrocytes, platelets and leukocytes was determined by conventional methods, and hemoglobin - hemoglobin cyanide. The content of nitric oxide (NO) in the blood serum was determined by the method of Green in the modification of Golikov, haptoglobin - by reaction with rivanol kits PJSC "Reagent" (Ukraine) and α2-macroglobulin - by KM Veremeenko. Statistical processing of the results was performed using the program Statistica 10 (StatSoft Inc, USA, 2011). It was found that bone trauma in dogs is accompanied by a decrease in peripheral blood of erythrocytes by 1.3 times (p <0.001) and an increase of 1.1 times (p <0.05) the number of leukocytes with a tendency to increase hemoglobin and platelets, compared with indicators of clinically healthy animals. After osteosynthesis in all groups leukocytosis developed. During osteosubstitution, the intensity and duration of the leukocyte reaction decreased significantly. In the first experimental group, the peak of NO concentration occurred on the 21st day, and in the case of combined osteosubstitution, the phase of its changes was noted, which had two peaks: on the 7th in 1.5 and on the 21st in 1.8 (p <0.001) is several times higher than in the control group. The concentration of haptoglobin after bone injury in dogs increased 1.1 times (p <0.001) compared with clinically healthy animals and reached its peak in all groups on the 3rd day (p <0.001). No changes in α2-macroglobulin concentration were observed in the groups during the entire study period. Combined osteosubstitution by calcium-phosphate ceramics with platelet-enriched fibrin induces early osteogenic processes at a lower intensity of the acute phase reaction at the phase peaks of nitric oxide - an inducer of angiogenesis, which indicates the viability of animals.

Key words: nitric oxide, acute phase proteins, reparative potential, platelets.

  1. Rublenko, S.V., Yeroshenko, O.V. (2012) Monitorynh veterynarnoi dopomohy i struktura khirurhichnoi patolohii sered dribnykh domashnikh tvaryn v umovakh miskoi kliniky [Monitoring of veterinary care and the structure of surgical pathology among small pets in the city clinic]. Visnyk Sumskoho NAU [Bulletin of the Sumy NAU]. no. 1(30), pp. 150–154. Availeble at:nbuv.gov.ua/ UJRN/Vsna_ vet_2012_1_44
  2. Abd El Raouf, M., Ezzeldein, S.A., Eisa, E.F.M. (2019). Bone fractures in dogs: A retrospective study of 129 dogs. Journal of Veterinary Sciences. Vol. 33, no. 2, pp. 401–405. DOI:10.33899/ijvs.2019.163086
  3. Jain, R., Shukla, B.P., Nema, S., Shukla, S., Chabra, D., Karmore, S. K. (2018). Incidence of fracture in dog: a retrospective study. Veterinary Practitioner. Vol. 19, no. 1, pp. 63–65.
  4. Tarunbir Singh, P., Mohindroo, J., Verma, P., Udheiya, R., Umeshwori, N. (2019). Evaluation of intramedullary pinning technique for management of tibia fractures in dogs. The Pharma Innovation Journal. Vol. 8(2), pp. 291–297.
  5. Emanov, A.A., Marchenkova, L.O. (2010). Renthenolohycheskaia dynamyka formyrovanyia kostnoho srashchenyia pry lechenyy perelomov predplechia u sobak metodom chreskostnoho osteosynteza [X-ray Dynamics of Formation of Osteo-Fusion in the Treatment of Forearm Fractures in Dogs by Transosseous Osteosynthesis]. Aktualnye voprosy veterynarnoi biology [Topical issues of veterinary biology]. no. 4 (8), pp. 17–25.
  6. Marongiu, G., Dolci, A., Verona, M., Capone, A. (2020). The biology and treatment of acute long-bones diaphyseal fractures: Overview of the current options for bone healing enhancement. Bone Reports. 100249. DOI:10.1016/j.bonr.2020. 100249
  7. Massie, A.M., Kapatkin, A.S., Fuller, M.C., Verstraete, F.J.M., Arzi, B. (2017). Outcome of nonunion fractures in dogs treated with fixation, compression resistant matrix, and recombinant human bone morphogenetic protein-2. Veterinary and Comparative Orthopaedics and Traumatology. Vol. 30, no. 2, pp. 153–159. DOI:10.3415/VCOT-16-05-0082
  8. Dülgeroglu, T.C., Metineren, H. (2017). Evaluation of the effect of platelet-rich fibrin on long bone healing: An experimental rat model. Orthopedics. Vol. 40, no. 3, pp. 479–484. DOI:10.3928/01477447- 20170308-02
  9. Principles of Regenerative Medicine / A. Atala et al. 3-edn, Academic Press. 2019. DOI:10.1016/ B978-0-12-809880-6.00043-6
  10. Sallam, S.M., Ahmed, L.M., Amin, A., Alakraa, A.M., El-kasapy, A.H. (2020). The Effects of nano hydroxyapatite and nano hydroxyapatite doped by magnesium on fracture healing in dogs. Benha Veterinary Medical Journal. Vol. 38, pp. 47–51.
  11. Todosjuk T.P. (2020). Rentgeno- ta makromorfologіchna ocіnka reparativnogo osteogenezu za іmplantacії gіdroksiapatitnogo kompozitu, legovanogo germanієm [X-ray and macromorphological assessment of reparative osteogenesis by implantation of hydroxyapatite composite doped with germanium]. Nauk. vіsnik vet. medicini: zb-k nauk. prac' [Scientific Bulletin of Veterinary Medicine: collection of scientific papers]. no. 2, pp. 183–194. DOI:10.33245/2310-4902- 2020-160-2-183-194 (in Ukraine)
  12. Li, Z., Müller, R., Ruffoni, D. (2018). Bone remodeling and mechanobiology around implants: Insights from small animal imaging. Journal of Orthopaedic Research. Vol. 36, no. 2, pp. 584–593. DOI:10.1002/ jor.23758
  13. Wang, W., Yeung, K. W. K. (2017). Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioactive Materials. Vol. 2, no. 4, pp. 224–247. DOI:10.1016/j.bioactmat.2017.05.007
  14. Rublenko, M.V., Chemerovs'kij, V.O., Vlasenko, V.M., Ul'janchich, N.V. (2018). Ocіnka osteoіntegracіjnih і osteoіnduktivnih vlastivostej keramіki, legovanoji kremnіjem, za model'nih perelomіv stegnovoji kіstki u krolіv [Evaluation of osteointegration and osteoinductive properties of silicon-doped ceramics in model femoral fractures in rabbits]. Naukovij vіsnik veterinarnoi medicini [Scientific Bulletin of Veterinary Medicine]. no. 2, pp. 44–53. DOI:10.33245/2310- 4902-2018-144-2-37-46
  15. Shevchenko, S.М., Rublenko, M.V., Ulyanchich, N.V., Klymenko, P.P. (2021). Gіstomorfologіchna harakteristika osteozamіshhennja u krolіv gіdroksiapatitnoju keramіkoju ta fіbrinom, zbagachenim trombocitami [Histomorphological characteristics of bone replacement in rabbits with hydroxyapatite ceramics and Platelet-Rich Fibrin]. Naukovij vіsnik LNUVMB іmenі S.Z. Gzhic'kogo [Scientific Bulletin of Lviv National University of Veterinary Medicine and Biotechnology named after S.Z. Gzhytskoho]. Serіja: Veterinarnі nauki [Series: Veterinary sciences]. no. 23(102), pp. 43–52. DOI:10.32718/nvlvet10207
  16. Simonpieri, A., Del Corso, M., Vervelle, A., Jimbo, R., Inchingolo, F., Sammartino, G., M. Dohan Ehrenfest, D. (2012). Current Knowledge and Perspectives for the Use of Platelet-Rich Plasma (PRP) and Platelet-Rich Fibrin (PRF) in Oral and Maxillofacial Surgery Part 2: Bone Graft, Implant and Reconstructive Surgery. Current Pharmaceutical Biotechnology. Vol. 13, no. 7. pp. 1231–1256. DOI:10.2174/138920112800624472
  17. Ribitsch, I., Oreff, G.L., Jenner, F. (2021). Regenerative medicine for equine musculoskeletal diseases. Animals. Vol. 11, no. 1. pp. 1–30. DOI:10.3390/ani 11010234
  18. Tambella, A.M., Attili, A.R., Dupré, G., Cantalamessa, A., Martin, S., Cuteri, V., Marcazzan, S., Fabbro, M. Del. (2018). Platelet-rich plasma to treat experimentally-induced skin wounds in animals: A systematic review and meta-analysis. PLoS ONE. Vol. 13, no. 1, pp. 1–26. DOI:10.1371/journal.pone.0191093
  19. Foster, T.E., Puskas, B.L., Mandelbaum, B.R., Gerhardt, M.B., Rodeo, S.A. (2009). Platelet-rich plasma: From basic science to clinical applications. American Journal of Sports Medicine. Vol. 37, no. 11, pp. 2259–2272. DOI:10.1177/036354 6509349921
  20. Khalaf, F.H., Salih, S.I. (2018). Clinical and Histopathological Evaluation of Using Platelet-Rich Plasma and Platelet-Rich Fibrin Matrix in Treatment of Induced Chronic Open Wounds in Bucks. Asian Journal of Pharmaceutical and Clinical Research. Vol. 11, no. 5. DOI:10.22159/ajpcr.2018.v11i5.24105
  21. David, M. Dohan Ehrenfest, Gilberto, S., Jamil, A.S., Hom-Lay, W., De-Rong, Zou. (2013). Guidelines for the publication of articles related to platelet concentrates (Platelet-Rich Plasma - PRP, or Platelet-Rich Fibrin - PRF): the international classification of the POSEIDO. POSEIDO. Vol. 1, no. 1, pp. 17–27.
  22. Steller, D., Herbst, N., Pries, R., Juhl, D., Hakim, S.G. (2019). Impact of incubation method on the release of growth factors in non-Ca 2+ -activated PRP, Ca 2+ -activated PRP, PRF and A-PRF. Journal of Cranio-Maxillofacial Surgery. Vol. 47, no. 2, pp. 365–372. DOI:10.1016/j.jcms.2018.10.017
  23. Neiva, R.F., Gil, L.F., Tovar, N., Janal, M.N., Marao, H.F., Bonfante, E.A., Pinto, N., Coelho, P.G. (2016). The synergistic effect of leukocyte platelet-rich fibrin and micrometer/nanometer surface texturing on bone healing around immediately placed implants: An experimental study in dogs. BioMed Research International. DOI:10.1155/2016/9507342
  24. Kornsuthisopon, C., Pirarat, N., Osathanon T., Kalpravidh C. (2020). Autologous platelet-rich fibrin stimulates canine periodontal regeneration. Scientific Reports. Vol. 10, no. 1, pp. 1–14. DOI:10.1038/s41598- 020-58732-x
  25. Thanoon, M.G., Eesa, M.J., Abed, E. R. (2019). Effects of platelets rich fibrin and bone marrow on the healing of distal radial fracture in local dogs: Comparative study. Iraqi Journal of Veterinary Sciences. Vol. 33, no. 2, pp. 419–425. DOI:10.33899/ijvs.2019.163169
  26. Salih, S.I., Al-Falahi, N.H., Saliem, A.H., Abedsalih, A.N. (2018). Effectiveness of platelet-rich fibrin matrix treated with silver nanoparticles in fracture healing in rabbit model. Veterinary World. no. 11 (7), pp. 944–952. DOI:10.14202/ vetworld.2018.944-952
  27. Shevchenko, S.M. (2020). Dinamіka gematologіchnih pokaznikіv, makromorfologіchna і rentgenologіchna kartini reparativnogo osteogenezu v krolіv za vikoristannja trombocitarnih koncentratіv ta gіdroksiapatitnoї keramіki [Dynamics of hematological indications, macromorphological and radiological picture of reparative osteogenesis in rabbits for platelet concentrates and hydroxyapatite ceramics]. Naukovij vіsnik veterinarnoї medicini [Scientific Bulletin of Veterinary Medicine]. no. 1, pp. 153–164. DOI:333245/2310-4902-2020-154-1-153-164
  28. Shevchenko, S.M., Rublenko, M.V. (2020). Gіstologіchna harakteristika zgustkіv fіbrinu, zbagachenih trombocitami і oderzhanih za rіznih rezhimіv centrifuguvannja krovі [Histological characteristics of Platelet-Rich Fibrin clots obtained under various modes of blood centrifugation]. Naukovij vіsnik LNUVMB іmenі S.Z. Ґzhic'kogo [Scientific Bulletin of Lviv National University of Veterinary Medicine and Biotechnology named after S.Z. Gzhytskoho]. Serіja: Veterinarnі nauki [Series: Veterinary sciences]. no. 22 (99), pp. 84–93. DOI:10.32718/ nvlvet9914.
  29. Grand, F., Guitton, J., Goudable, J. (2001). Optimization of the measurement of nitrite and nitrate in serum by the Griess reaction. Ann. Biol. Clin. (Paris). Vol. 59, pp. 559–565.
  30. Holykov, P.P. (2004). Oksyd azota v klynyke neotlozhnykh zabolevanyi [Nitric oxide in an emergency clinic]. Medpraktika. 180 p.
  31. Veremeenko, K.N, Goloborod'ko, O.P., Kizim, O.I. (1988). Proteoliz v norme i pri patologii [Proteolysis in normal and pathological conditions]. Kyiv: Health, 200 p.
  32. Danylovych, G.V., Bohach, T.V., Danylovych, Y.V. (2018). The biosynthesis of nitric oxide from L-arginine. Nitric oxide formation features and its functional role in mitochondria. Ukr. Biochem. Vol. 90, no. 1, pp. 3–24. DOI:10.15407/ubj90.01.003
  33. Hu, C., Ashok, D., Nisbet, D. R., Gautam, V. (2019). Bioinspired surface modification of orthopedic implants for bone tissue engineering. Biomaterials. DOI:10.1016/j.biomaterials.2019.119366
  34. Crisci, A., De Crescenzo, U., Crisci, M. (2018). Platelet-rich concentrates (L-PRF, PRP) in tissue regeneration: Control of apoptosis and interactions with regenerative cells. Journal of Clinical and Molecular Medicine. Vol. 1, no. 3, pp. 1– 5.
  35. Chemerovs'kij, V.O. (2020). Rentgenografіchna, makromorfologіchna і gematologіchna ocіnka gіdroksiapatitnoі keramіki z rіznimi fіziko-hіmіchnimi vlastivostjami [Radiographic, macromorphological and hematological evaluation of hydroxyapatite ceramics with different physical and chemical authorities]. Naukovij vіsnik veterinarnoi medicini [Scientific bulletin of veterinary medicine]. no. 1, pp. 140–152. DOI:10.33245/2310-4902-2020-154-1-140-152
  36. Rublenko, M.V., Andrijec', V. G., Semenjak, S. A. (2017). Molekuljarno-biologichni mehanizmy reparatyvnogo osteogenezu [Molecular and biological mechanisms of reparative osteogenesis]. Naukovyj visnyk veterynarnoi' medycyny [Scientific Bulletin of Veterinary Medicine]. Vol. 2, no. 136, pp. 13–21.
  37. Shaganenko, V.S. (2012). Klіnіko-patogenetichna rol' oksidu azotu ta korekcіja jogo rіvnja za hіrurgіchnoі patologіі zapal'nogo ґenezu v tvarin rіznih vidіv: avtoref. dis. … kand. vet. nauk: 16.00.05. [Clinical and pathogenetic role of nitric oxide and correction of the same for surgical pathology of the ignition genesis in different species: abstract of the dissertation of the candidate of veterinary sciences: 16.00.05.]. Bila Tserkva, 23 p.
  38. Kattimani, V.S., Kondaka, S., Lingamaneni, K.P. (2016). Hydroxyapatite-Past, Present, and Future in Bone Regeneration. Bone and Tissue Regeneration Insights. Vol. 7. DOI:10.4137/btri.s36138
  39. Sadrzadeh, S.M., Bozorgmehr, J. (2004). Haptoglobin phenotypes in health and disorders. Am J Clin Pathol. no. 121 (l), pp. 97–104. DOI:10.1309/8GLX 5798Y5XHQ0VW.
AttachmentSize
PDF icon shevchenko_rublenko_1_2022.pdf1.15 MB