You are here

Dynamics of hematological parameters, macromorphological and radiological results of reparative osteogenesis in rabbits for the use of platelet concentrates and hydroxyapatite ceramics

The results of the dynamics of the morphological parameters of the blood of a rabbit with model defects of the opening of the spongy and compact bone tissue at diff erent periods of reparative osteogenesis are presented. Formed 4 groups of rabbits. Bone lesions in the fi rst experimental group were fi lled with injectable platelet-rich fi brin, in the second - platelet-rich fi brin, in the third - a combination of platelet-rich fi brin, and hydroxyapatite with β-tricalcium phosphate.In the control group, the defects remained healed under a blood clot. All animals were in the same conditions of feeding and keeping, had unlimited access to water. During the study, rabbits were clinically observed. Blood was taken for morphological examination before surgery and on the 3rd, 7th, 14th, 21st, 42nd day. Animals were taken from the experiment on the 14th, 21st and 42nd days, an X-ray examination was carried out, bone tissue samples were taken. It was established that trauma of bone tissue leads to a number of reactions of the body aimed at restoring the damaged area. Against the background of the general picture of the obtained morphological results, the level of platelets signifi cantly changes compared to the physiological norm, while the number of red blood cells and white blood cells does not go beyond it. There is a slight increase in hemoglobin levels, especially in the experimental groups on the twenty-fi rst and forty-second day. Signifi cant changes in the number of red blood cells, white blood cells, platelets and hemoglobin concentration in the experimental groups were noted compared with the control group at diff erent periods of reparative osteogenesis.The use of various types of platelet concentrates aff ects the overall reaction of the body. On radiographs of the radial bones (compact bone tissue) on the twenty-fi rst day in the second and third experimental groups, where fi brin enriched with platelets and its combination with hydroxyapatite materials with β-tricalcium phosphate were used to replace bone defects, the infl ammatory reaction was manifested to a lesser extent. There was no signifi cant formation of bone callus compared with the fi rst, in which model defects were fi lled with injectable platelet-rich fi brin and the control group. Each of the types of platelet concentrates and their combination with hydroxyapatite ceramics have a diff erent eff ect on the restoration of bone defects and is accompanied by the appearance of a number of reactions, both local and general. According to the degree of intensity of this process, they can be placed in the following sequence: i-PRF ˂ PRF ˂ PRF+GT. Macromorphologically and radiologically signifi cant diff erences were not detected for diff erent types of bone tissue due to the use of each of the substances that concentrates platelets. The combination of hydroxyapatite granules with β-tricalcium phosphate and platelet-rich fi brin proved to be the best option for repairing the damaged area. Its use provides a signifi cantly smaller manifestation of the local infl ammatory reaction and causes the formation of optimal bone marrow.

Key words: PRF, i-PRF, granules, centrifuges, growth factors, bone marrow.

 

  1. Gaiko, G.V., Brusko, A.T. (2013). Teoreticheskie aspekty fi ziologicheskoj i reparativnoj regeneracii kostej s pozicij sistemnyh predstavlenij [Theoretical aspects of physiological and reparative bone regeneration from the standpoint of system representations]. “Zhurnal NAMN Ukrai'ny” ["Journal of the National Academy of Medical Sciences of Ukraine"].  Vol. 19, no. 4, pp. 471–481.
  2. Naumenko, L.Ju., Panasjuk, A.F., Kostryca, K.Ju., Goregljad, A.M., Bondarenko, A.A., Horoshyh, V.V. (2014). Vlijanie biokompozitnogo materiala na processy regeneracii kostnoj tkani v uslovijah jeksperimenta (immunogistohimicheskoe issledovanie) [The eff ect of biocomposite material on bone tissue regeneration processes under experimental conditions (immunohistochemical study)]. Travma [Injury]. Vol. 15, no. 4, pp. 66–72.
  3. Winkler T., Sass F.A., Duda G.N., Schmidt-Bleek K. (2018). A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering. Bone Joint Res. Vol. 7, no. 3, pp. 232–243. Available at:https://doi.org/10.1302/2046-3758.73.BJR2017-0270.R
  4. Turan, Cihan Dülgeroglu., Hasan, Metineren. (2017). Evaluation of the Eff ect of Platelet-Rich Fibrin on Long Bone Healing: An Experimental Rat Model. Orthopedics. Vol. 40, no. 3, pp. 479–484. Available at:https://doi.org/10.3928 / 01477447-20170308-02
  5. L.V. Alekseeva, V.V. Zajcev, L.P. (2017). Fiziologicheskie mehanizmy  realizacii gemostaticheskih funkcij trombocitov [Physiological mechanisms for the implementation of hemostatic platelet functions]. Jelektronnyj nauchno-obrazovatel'nyj Vestnik «Zdorov'e i obrazovanie v XXI veke» [Electronic scientifi c and educational Bulletin "Health and education in the XXI century"]. Vol. 19, no. 1, pp. 1–6.
  6. Klinger, M.H.F., Jelkmann, W. (2002). Role of Blood Platelets in Infection and Infl ammation. Journal of Interferon & Cytokine Research. Vol. 22, pp. 913–922. Available at:https://doi.org/10,1089 /10799900260286623
  7. Osman, K., Gabr, A., Haddad, F.S. (2019). Bone Healing. In: Paschos N., Bentley G. (eds) General Orthopaedics and Basic Science. Orthopaedic Study Guide Series. Springer, Cham. Available at:https://doi.org/10.1007/978-3-319-92193-8_14
  8. Rublenko, M.V., Andrijec', V.G., Lugovs'koj, E.V., Platonova, T.M., Chernyshenko, T.M. (2014). Kliniko-rentgenologichna harakterystyka eksperymental'nogo zastosuvannja fi brynovogo gelju dlja optymizacii' reparatyvnogo osteogenezu v kroliv [Clinical and radiological characteristics of the experimental use of fi brin gel to optimize reparative osteogenesis in rabbits]. Naukovyj visnyk veterynarnoi' medycyny [Scientifi c Bulletin of Veterinary Medicine]. no. 14 (114), pp. 130–134.
  9. Rublenko, M.V., Chemerovs'kyj, V.O., Vlasenko, V.M. Ul'janchych, N.V. (2018). Ocinka osteointegracijnyh i osteoinduktyvnyh vlastyvostej keramiky, legovanoi' kremnijem, za model'nyh perelomiv stegnovoi' kistky u kroliv [Evaluation of osteointegration and osteoinductive properties of silicon-doped ceramics in model fractures of the femur in rabbits].Naukovyj visnyk veterynarnoi' medycyny [Scientifi c Bulletin of Veterinary Medicine]. no. 2, pp. 44–53. Available at:https://doi.org/10.33245/2310-4902-2018-144-2-44-53
  10. Rublenko, M.V., Semenjak, S.A., Ul'janchych, N.V. (2014). Dynamika biomarkeriv reparatyvnogo osteogenezu za umov zamishhennja kistkovyh defektiv [Dynamics of biomarkers of reparative osteogenesis under conditions of bone defects replacement]. Naukovyj visnyk LNUVVBT im. S.Z. Gzhyc'kogo [Scientifi c Bulletin Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Lviv]. Lviv, Vol. 16, no. 3 (60), Part 1, pp. 287–294.
  11. Bielecki T., Dohan Ehrenfest D. M. (2012).  PlateletRich Plasma (PRP) and Platelet-Rich Fibrin (PRF): Surgical Adjuvants, Preparations for In Situ Regenerative Medicine and Tools for Tissue Engineering. Current Pharmaceutical Biotechnology. no. 13, pp. 1121–1130. Available at:https:// doi.org/10,2174/138920112800624292
  12. Dohan Ehrenfest, D.M., Rasmusson, L., Albrektsson, T. (2009). Classifi cation of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and plateletrich fi brin (L-PRF). Trends in Biotechnology. Vol. 27. no. 3, pp. 158–167. Available at:https://doi.org/10.1016 / j.tibtech.2008.11.009
  13. Kossev, P., Sokolov, T. (2015). Platelet-rich Plasma (PRP) in Orthopedics and Traumatology – Review. Immunopathology and Immunomodulation. pp. 173– 195. Available at:https://doi.org/10.5772/61326
  14. Oleya, M.C.,  AsadulIslamb, A., Hattac, M., Hardjodet, M. (2018). Eff ects of platelet-rich plasma and carbonated hydroxyapatite combination on cranial defect Bone Regeneration: An animal study. Wound Medicine. no. 21, pp. 12–15. Available at:https://doi.org/10.1016/j.wndm.2018.05.001
  15. Oryan, A., Alidadi, S., Moshiri, A. (2014). Amin Bigham-Sadegh. Bone morphogenetic proteins: A powerful osteoinductive compound with non-negligible side eff ects and limitations. International Union of Biochemistry and Molecular Biology. Vol. 40 (5), pp. 459–481. Available at:https://doi.org/10,1002 / biof.1177
  16. Peck, M.T., Hiss, D., Stephen, L. (2016). Factors affecting the preparation, constituents, and clinical eff cacy of leukocyte- and platelet- rich fi brin (L-PRF). SADJ. Vol. 71, no. 7, pp. 298–302.
  17. David, M. Dohan., Choukroun, J., Diss, A.,  Steve, L. Dohan., Anthony, J.J. Dohan., Mouhyi, J., Gogly, B. (2006). Platelet-rich fi brin (PRF): A second-generation platelet concentrate. Part II: Platelet-related biologic featuresOralSurg Oral Med Oral Pathol Oral RadiolEndod. Vol. 101, pp. 45–50. Available at:https://doi.org/10.1016/j.tripleo.2005.07.009
  18. Arora, S., Agnihotri, N. (2017). Platelet Derived Biomaterials for Therapeutic Use: Review of Technical Aspects. Indian J Hematol Blood Transfus. Vol. 33(2), pp. 159–167. Available at:https://doi.org/10.1007/s12288-0160669-8
  19. Steller, D., Herbst, N., Pries, R., Juhl, D., Hakim, S.G. (2018). Impact of incubation method on the release of growth factors in Non-Ca2+-activated PRP, Ca2+-activated PRP, PRF and A-PRF. Journal of Cranio-Maxillofacial Surgery. pp. 1–28. Available at:https://doi.org/10.1016/j. jcms.2018.10.017
  20. Kostyv, R.E., Kalynychenko, S.G., N.Ju. Matveeva, N.Ju. (2017). Trofi cheskie faktory rosta kostnoj tkani, ih morfogeneticheskaja harakteristika i klinicheskoe znachenie [Trophic bone growth factors, their morphogenetic characteristics and clinical signifi cance].TMZH. no. 1, pp. 10–16. Available at:https://doi.org/10.17238/PmJ1609-1175.2017.1.10–16 
  21. Samuel, P. Franklin., Kate, E. Birdwhistell., Strelchik, A. (2017). Infl uence of Cellular composition and Exogenous Activation of Growth Factor and Cytokine Concentrations in Canine Platelet-Rich Plasmas. Frontiers in Veterinary Science. Vol. 4,pp. 1–10. Available at:https://doi.org/10.3389 / fvets.2017.00040
  22. Raquel Maia, F., Vitor, M. Correlo., Joaquim, M. Oliveira., Rui, L. (2019). Reis. Natural Origin Materials for Bone Tissue Engineering: Properties, Processing, and Performance. Principles of Regenerative Medicine. Third Edition. Р. 535–558. Available at:https://doi.org/10.1016/ B978-0-12-809880-6.00032-1/
  23. Mali, A.,  Gokhale, S., Patil, V., Khadtareet, Y. (2018). Platelet rich fi brin: focus on growth factors and cytokines. International Journal of Recent Scientifi c Research. Vol. 9, no. 5 (B), pp. 26531–26535. Available at:http://doi. org/10.24327/ijrsr.2018.0905.2078
  24. Rublenko, M.V., Semenjak, S.A., Andrijec', V.G. (2017). Molekuljarno-biologichni mehanizmy reparatyvnogo osteogenezu [Molecular biological mechanisms of reparative osteogenesis]. Naukovyj visnyk veterynarnoi' medycyny [Scientifi c Bulletin of Veterinary Medicine]. no. 2, pp. 11–20.
  25. Badran, Z., Mohamed-Nur, Abdallah., Torres, J., Tamimi, F. Platelet concentrates for bone regeneration:Current evidence and future challenges. Platelets. 2017. P. 1–8. Available at:https://doi.org/10.1080/09537104.2017.1327656
  26. David, M., Ehrenfest, D., Bielecki, T., Jimbo, R., Barbé, G.,  Marco Del, Corso., Inchingolo, F., Sammartino, G. (2012). Do the Fibrin Architecture and Leukocyte Content Infl uence the Growth Factor Release of Platelet Concentrates? An Evidence-based Answer Comparing a Pure Platelet-Rich Plasma (P-PRP) Gel and a Leukocyte- and Platelet-Rich Fibrin (L-PRF). Current Pharmaceutical Biotechnology. 13, pp. 1145–1152.
  27. Falan, H. Khalaf., Serwa, Ibrahim Salih. (2018). Clinical and histopathological evaluation of using platelet-rich plasma and platelet-rich fi  brin matrix in treatment of induced chronic open wounds in bucks. Asian Journal of Pharmaceutical and Clinical Research. Vol. 11, no. 5, pp. 337–341.         
  28. Maria Rosaria, De Pascale., Linda, Sommese., Amelia, Casamassimi., Claudio, Napoli. (2015). Platelet Derivatives in Regenerative Medicine: An Update. Transfusion Medicine Reviews. Vol. 29, pp. 52–61. Available at:https://doi.org/10.1016/j.tmrv.2014.11.001
  29. Kaux, J.F., Drion, P., Croisier, J.L., Crielaard, J.M. (2015). Tendinopathies and platelet-rich plasma (PRP): from preclinical experiments to therapeutic use. Journal of Stem Cells and Regenerative Medicine. Vol. 11, no. 1, pp. 7–17.
  30. Mirza, M.H., Bommala, P., Richbourg, H.A., Rademacher, N. (2016). Gait Changes Vary among Horses with Naturally Occurring Osteoarthritis Following Intraarticular Administration of Autologous Platelet-Rich Plasma. Front. Vet. Sci. Vol. 3, 29 p. Available at:https://doi. org/10.3389/fvets.2016.00029.
  31. Baszczyk, B., Kaspera, W., Ficek, K. (2018). Eff ects of Polylactide Copolymer Implants and Platelet-Rich Plasma on Bone Regeneration within a Large Calvarial Defect in Sheep. BioMed Research International. pp. 1–11.
  32. Donos, N., Dereka, X., Calciolari, E. (2019). The use of bioactive factors to enhance bone regeneration: A narrative review. J Clin Periodontol.  Vol. 46(Suppl. 21), pp. 124–161.
  33. Wang, Q.L., Yang, P., Hong, Ge, Li., Liu, He. (2016). Preliminary Evaluation of Platelet Rich FibrinMediated Tissue Repair in Immature Canine Pulpless Teeth. The Chinese Journal of Dental Research. Vol. 19, 1, pp. 49–50.
  34. Salih, S.I., Al-Falahi, N.H., Saliem, A.H., Abedsalih, A.N. (2018). Eff  ectiveness of platelet-rich fi brin matrix treated with silver nanoparticles in fracture healing in rabbit model. Veterinary World. Vol. 11 (7), pp. 944–952.
  35. Semenov, B.S. (2017). Lechenie tendinita poverhnostnogo sgibatelja pal'ca u loshadej s ispol'zovaniem trombocitarnoj autoplazmy [Treatment of superfi cial fl exor tendonitis in horses using platelet autoplasma]. Vestnik Altajskogo gosudarstvennogo agrarnogo universiteta [Bulletin of the Altai State Agrarian University]. no. 1 (147), pp. 125–132.
  36. Simon, J. Davidson. (2013). Infl ammation and Acute Phase Proteins in Haemostasis. pp. 31–54. Available at:https://doi.org/10.5772/55998
  37. Ahtjamov, I.F.,  Shakyrova, F.V., Zubayrova, L.D.,  Gatyna, Je.B., Aliev Je.I. (2013). Ocenka otveta ostroj fazy pri jeksperimental'nom osteosinteze implantami s bioinertnympokrytiem nіtridami sverhtverdyhmetallov [Assessment of the response of the acute phase during experimental osteosynthesis with implants with a bioinert coating with superhard metal nitrides].  Genij Ortopedii [The genius of Orthopedics]. no. 4, pp. 80–83.
AttachmentSize
PDF icon shevchenko_1_2020.pdf4.09 MB