You are here

The effect of autonomic nervous system tone on the content of cyclic and acyclic aminoacids in the serum of chickens

Regulation of metabolic and physiological functions of the whole organismis a complex neurohumoral process. Its functioning is supported by many organs and systems. One of the main roles here is performed by the autonomic nervous system. The mutual influence of its departments – sympathetic and parasympathetic, provide stable homeostasis and balanced work of all organs and structures. The sympathetic department is responsible for energy resource mobilization and adaptation. Without its influence, a rapid response of the cardiovascular and endocrine systems to the body's needs arising from changes in the internal or external environment is impossible. Dominant sympathetic tone provides activation of gluconeogenes is and glycogenolysis, lipolysis, etc. In contrast, the parasympathetic division is responsible for energy conservation and nutrient accumulation. Its dominant activity causes a decrease in heart rate, increase in pupil diameter depending on light flux, secretion of saliva and digestive juices, acceleration of motility of the gastrointestinal tract. However, to date, the existence of the influence of the tone of the autonomic nervous system on the content of proteins and their derivatives in the serum has not been studied enough. Proteins and their main components – aminoacids are indispensable in the construction and functioning of the whole organism of all living beings. Deficiency or absence of at least one essential amino acid can lead to disruption of various functional systems of the body, adverse health effects, and in the case of long-term deficiency and death. Studies to determine the content of amino acids in the serum of chickens with different dominant tone of the autonomic nervous system revealed different contents of individual cyclic and acyclic amino acids. The content of phenylalanine in sympathicotonic chickens differed significantly compared with the bird, which had a balanced tone (P˂0.05). In contrast, the tyrosine content was almost the same in all groups of animals. The amino acids leucine/ isoleucine and alanine were not significantly predominant in the different samples, but tended to be higher in sympathetic and vagotonic chickens. The study suggests that the dominance of the sympathetic and parasympathetic divisions of the autonomic nervous system or their balanced tone on the content of amino acids in the serum of chickens.

Key words: sympathicotonia, vagotonia, normotony, phenylalanine, alanine, leucine/isoleucine, tyrosine.

 

  1. Wehrwein, E. A., Orer, H. S., Barman, S. M. (2016). Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System. Comprehensive Physiology. Vol. 6, no. 3, pp. 1239–1278. DOI:10.1002/cphy.c150037
  2. Postoi, R., Karpovskyi, V., Cherepnina, A., Postoi, V. (2020). Kortyko-vehetatyvna rehuliatsiia aktyvnosti aminotransferaz u syrovattsi krovi kholostykh svynomatok za umovy dii tekhnolohichnoho podraznyka [Cortic-vegetative regulation of activity aminotransferases in separate blood serum sow under conditions of technological irritant]. Naukovi Dopovidi NUBiP Ukrainy [Scientific reports of NULES of Ukraine]. Vol. 87, no. 5, pp. 1–13. DOI:10.31548/dopovidi2020.05.013
  3. Reutov, V.P., Chertok, V.M. (2016). Novyye predstavleniya o roliv egetativnoy nervnoy sistemy i sistem generatsii oksida azota v sosudakh mozga [New ideas about the role of the autonomic nervous system and systems for generating nitric oxide in the cerebral vessels]. Tikhookeanskiy meditsinskiy zhurnal [Pacific Medical Journal]. Vol. 64, no. 2, pp. 10–19. Available at:www.tmjvgmu.ru/jour/article/view/32
  4. Natale, G., Ryskalin, L., Morucci, G., Lazzeri, G., Frati, A., Fornai, F. (2021). The baseline structure of the enteric nervous system and its role in Parkinson’s disease. Life. Vol. 8, no. 11, 732 p. DOI:10.3390/life11080732
  5. Furness, J. (2000). Types of neurons in the enteric nervous system. Journal of the Autonomic Nervous System. Vol. 1–3, no. 81, pp. 87–96. DOI:10.1016/s0165-1838(00)00127-2
  6. Gibbons, C. H. (2019). Basics of autonomic nervous system function. Handbook of clinical neurology. Vol. 160, pp. 407–418. DOI:10.1016/B978-0-444-64032-1.00027-8
  7. Zefimov, T. L., Dobrotvorskaya, S. G. (2015). Ontogenez vegetativnoy nervnoy sistemy: uchebnometodicheskoye posobiye [Ontogenesis of the vegetative nervous system]. Kazanskiy (Privolzhskiy) federalnyy universitet [Kazan (Volga Region) Federal University]. 41 p. Available at:kpfu.ru/staff_files/F1679124847/Ontogenez_ vegetativnoj_nervnoj_sistemy._Posobie.pdf
  8. McCorry, L. K. (2007). Physiology of the autonomic nervous system. American Journal of Pharmaceutical Education. Vol 4, no. 71, 11 p. DOI:10.5688/aj710478
  9. Gelwane, G., Trang, H., Carel, J. C., Dauger, S., Léger, J. (2013). Intermittent Hyperglycemia due to Autonomic Nervous System Dysfunction: A New Feature in Patients with Congenital Central Hypoventilation Syndrome. The Journal of Pediatrics. Vol. 1, no. 162, pp. 171–176. DOI:10.1016/j. jpeds.2012.06.036
  10. Ahrén, B. (2000). Autonomic regulation of islet hormone secretion-implications for health and disease. Diabetologia. Vol. 4, no. 43, pp. 393–410. DOI:10.1007/s001250051322
  11. Karpovskyi, V. I., Trokoz, V. A., Karpovskyi, P. V., Krivoruchko, D. I., Postoi, R. V. (2016). Influence of the tone of the autonomic nervous system of pigs on the bactericidal and lysozyme activity of blood serum. Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies S. Z. Gzhytsky. Vol. 18, no. 1(2), pp. 69–73. Available at:nvlvet.com.ua/index.php/journal/article/ view/93
  12. Abboud, F. M., Singh, M. V. (2017). Autonomic regulation of the immune system in cardiovascular diseases. Advances in physiology education. Vol. 4, no. 41, pp. 578–593. Doi:10.1152/advan. 00061.2017
  13. Padro, C. J., Sanders, V. M. (2014). Neuroendocrine regulation of inflammation. Semin Immunol. Vol. 26, pp. 357–368. DOI:10.1016/j.smim.2014. 01.003.
  14. Shields, R. W. (1993). Functional Anatomy of the Autonomic Nervous System. Journal of Clinical Neurophysiology. Vol. 1, no. 10, pp. 2–13. DOI:10.1097/00004691-199301000-00002
  15. Dimitri, P., Rosen, C. (2017). The central nervous system and bone metabolism: an evolving story. Calcified tissue international. Vol. 5, no. 100, pp. 476–485. DOI:10.1007/s00223-016-0179-6
  16. Elefteriou, F. (2008). Regulation of bone remodeling by the central and peripheral nervous system. Archives of biochemistry and biophysics. Vol. 2, no. 473, pp. 231–236. DOI:10.1016/j.abb.2008. 03.016
  17. Conde-Sieira, M., Capelli, V., Álvarez-Otero, R., DíazRúa, A., Velasco, C., Comesaña, S., López, M., Soengas, J. L. (2020). Hypothalamic AMPKα2 regulates liver energy metabolism in rainbow trout through vagal innervation. American Journal Physiology – Regulatory, Integrative and Comparative Physiology. Vol.1, no. 318, pp. 122–134. DOI:10.1152/ajpregu.00264.2019
  18. Grechko, A. V., Kiryachkov, Yu. Yu., Petrova, M. V. (2018). Sovremennyye aspekty vzaimosvyazi funktsionalnogo sostoyaniya avtonomnoy nervnoy sistemy I kliniko-laboratornykh pokazateley gomeostaza organizma pri povrezhdeniyakh golovnogo mozga [Modern aspects of interconnection of functional status of the autonomous nervous system and clinical laboratory indicators of body homeostasis for brain damage]. Vestnik intensivnoy terapii imeni A. I. Saltanova. [Intensive care bulletin named of A.I. Saltanov]. no. 2, pp. 79–86. Available at:intensive-care.ru/wp-content/uploads/2018/07/11.pdf
  19. Beaulieu, P., Lambert, C. (1998). Peptidic regulation of heart rate and interactions with the autonomic nervous system. Cardiovascular Research. Vol. 3, no. 37, pp. 578– 585. DOI:10.1016/ s0008-6363(97)00305-2
  20. Rosenberg, A. A., Weiser-Bitoun, I., Billman, G. E., Yaniv, Y. (2020). Signatures of the autonomic nervous system and the heart’s pacemaker cells in canine electrocardiograms and their applications to humans. Scientific Reports. Vol. 11, no. 10, pp. 1–15. DOI:10.1038/s41598-020-66709-z
  21. Castro, F. L. S., Kim, H. Y., Hong, Y. G., Kim, W. K. (2019). The effect of total sulfur amino acid levels on growth performance, egg quality, and bone metabolism in laying hens subjected to high environmental temperature. Poultry Science. Vol. 10, no. 98, pp. 4982–4993. DOI:10.3382/ps/ pez275
  22. Holeček, M., Vodeničarovová, M. (2018). Effects of branched-chain amino acids on muscles under hyperammonemic conditions. Journal of Physiology and Biochemistry. Vol. 4, no. 74, pp. 523–530. DOI:10.1007/s13105-018-0646-9
  23. Kobayashi, H. A. (2018). Amino acid nutrition in the prevention and treatment of sarcopenia. Yakugaku Zasshi: Journal of the Pharmaceutical Society of Japan. Vol. 10, no. 138, pp. 1277–1283. DOI:10.1248/yakushi.18-00091-4
  24. Lys, O. B., Regeda, M. S. (2018). Influence of L-arginin drugs on the change of lipid peroxidation and antioxidant systems in blood under conditions of combination pathology – immobilizational stress and adrenalin damage of myocardium. Medical and Clinical Chemistry. no. 3, pp. 119–124. DOI:10.11603/mcch.2410-681X.2018.v0.i3.9577
  25. Bin, P., Huang, R., Zhou, X. (2017). Oxidation Resistance of the Sulfur Amino Acids: Methionine and Cysteine. BioMed research international. pp. 1–6. DOI:10.1155/2017/9584932
  26. Okovity, S.V. (2020). Combined use of hepatoprotectors. The journal is included in the list of publications. Vol. 8, pp. 38–44. DOI:10.26295/OS.2020.65.19.005
  27. Wu, G., Bazer, F. W., Dai, Z., Li, D., Wang, J., Wu, Z. (2014). Amino acid nutritionin animals: protein synthesis and beyond. Annual Review of Animal Biosciences. Vol. 1, no. 2, pp. 387–417. DOI:10. 1146/annurev-animal-022513-114113
  28. Danchuk, O.V., Karposvkii, V.I., Tomchuk, V.A. (2020). Temperament in Cattle: A Method of Evaluation and Main Characteristics. Neurophysiology. Vol. 52 (1), pp. 73– 79. DOI:10.1007/s11062-020-09853-6
  29. Danchuk, O. V., Broshkov, M. M., Karpovsky, V. I. et al. (2020). Types of Higher Nervous Activity in Pigs: Characteristics of Behavior and Effects of Technological Stress. Neurophysiology. Vol. 52 (5). pp. 358–366. DOI:10.1007/s11062-021-09892-7
  30. Vasyliv, A. P., Karpovskyi, V. I., Danchuk, O. V. (2017). Kortykalna rehuliatsiia obminu bilkiv u svynei: monohrafiia [Cortical regulation of protein metabolism in pigs: monograph]. Kyiv: NUBiP, 154 p. Available at:dglib.nubip.edu.ua:8080/jspui/bitstream/123456789/4946/1/Vasiliv_Kortikalna_ reguljac%D1%96ja.pdf
  31. Trokoz A. V., KarpovskyV .I., Trokoz V. A. (2013). The relationship between the magnitude of cortical processes and the content of total protein in the serum of pigs. Scientific notes of the educational institution Vitebsk Order Badge of honor State Academy of Veterinary Medicine. Vol. 49, no. 2 (1), pp. 151–154. Available at:www.vsavm.by/wp-content/uploads/2013/11/2013-Uchenye-zapiski-t-49-v-2-ch...
  32. Karpovsky, P. V., Karpovsky, V. V., Landsman, A. A., Skrypkina, V. N., Postoi, R. V., Krivoruchko, D. I., Trokoz, V. A., Karpovsky, V. A., Trokoz, A. V. (2015). On the question of the relationship between cortical processes and the type of autonomic regulation of physiological functions of the pig's body. Animal husbandry and veterinary medicine. Vol. 17, no. 2, pp. 18–22. Available at:elc.baa.by/ upload/jivotnovodstvoi-vet/jiv02-2015.pdf
  33. Zhukov, M. S., Alekhin, Yu. N., Morgunova, V. I. (2020). Costoyaniye vegetativnoy nervnoy sistemy telyat s raznoy massoy tela pri rozhdenii [State of the vegetative nervous system of calfs with different body weight at birth]. Veterinarnyy vrach. [Veterinarian]. no. 6, pp. 28–37. DOI:10.33632/ 1998-698Х.2020-6-28-37
  34. Tybinka, A. M. (2011). Osoblyvosti variatsiinopulsometrychnykh pokaznykiv kurei [Indicators of variation pulsometry of chickens of different types of autonomic tone]. Naukovyi visnyk Lvivskoho natsionalnoho universytetu veterynarnoi medytsyny ta biotekhnolohii im. Gzhytskoho [Scientific Bulletin of Lviv National University of Veterinary Medicine and Biotechnology named of Gzhytsky]. Vol. 13, no. 4(1), pp. 446–449. Available at:nbuv.gov.ua/UJRN/ nvlnu_ 2012_14_2(1)__64
  35. Reddy, B. S., Reddy, P. A., Venkatasivakumar, R., Reddy, B. S. S., Reddy, E. T. (2016). A study on electrocardiographic patterns in turkeys (Meleagrisgallopav o). International Journal of Veterinary Science. Vol. 2, no. 5, pp. 79–82. Available at:www.ijvets.com/pdf-files/Volume-5-no-2-2016/79-82.pdf
  36. Studenok, A. A., Shnurenko, E. O., Trokoz, V. O., Karpovskyi V. I., Zhurenko, O. V., Kryvoruchko, D. I. (2020). Cposib ocinky tonusu avtonomnoi' nervovoi' systemy u kurej: pat. 142943 Ukrai'na: u201910996; 08.11.2019; 10.07.2020, Bjul. № 13. [Method for assessing the tone of the autonomic nervous system in chickens: US Pat. 142943 Ukraine: in 201910996; 11/08/2019; 10.07.2020, Bull. № 13.]. 3 p. Available at:base.uipv.org/searchINV/search.php?action=viewdetails& IdClaim=269534
  37. Bayer, D. M., Mohan, K., Jayakumar, K., Manafi, M., Pavithra, B. H. (2012). Simple cannulation procedure for serial blood sampling through cutaneous ulnar vein in chickens. Journal of Applied Animal Welfare Science. Vol. 1, no. 15, pp. 91–100. DOI:10.1080/10888705.2012.624925
  38. Komarova, N. V., Kamentsev, Ya. S. (2006). Prakticheskoye rukovodstvo po ispolzovaniyu sistem kapillyarnogo elektroforeza «KAPEL’». [Practical guide for the use of capillary electrophoresis systems "KAPEL"]. SPb: LLC "Veda", 212 p. Available at:docplayer.com/26721970-Prakticheskoe-rukovodstvo-po-ispolzovaniyusistem-kapillyarnogo-elektroforeza-kapel.html
  39. Shaposhnikov, A. M., Khalchitskiy, S. E. (2007). Patokhimiya obmena fenilalanina. tirozina. triptofana i aktivnost fenilalaningidroksilazy pecheni pri virusnykh gepatitakh [Pathochemistry of metabolism of phenylalanine, tyrosine, tryptophan and activity of liver phenylalanine hydroxylase in viral hepatitis]. Estestvennyye i tekhnicheskiye nauki [Natural and technical sciences]. no. 2, pp. 137–154. Available at:www.researchgate.net/publication/309374352_Patohimia_ obmena_fenilalanina_tirozina_triptofana_i_aktivnost_fenilalaningidroksilazy_peceni_pri_virusnyh _gepatitah
  40. Babich, O. O. (2011). Izucheniye svoystv fermentnogo preparata L-fenilalanin-ammoniy-liazy [Study of the properties of the enzyme preparation L-phenylalanineammonium-lyase]. Innovatsii v nauke. [Innovation in Science]. Vol. 4, pp. 17–20. Available at:cyberleninka. ru/article/n/izuchenie-svoystv-fermentnogo-preparata-lfenilalanin-ammoniy-liazy/viewer
  41. Sheybak, V. M., Lyakh, I. V., Sevko, E. V. (2011). Aromaticheskiye, aminokisloty: metabolizm i vozmozhnoye klinicheskoye ispolzovaniye [Aromatic AminoAcids: Metabolism and Potential Clinical Uses]. Aktualnyye problemy meditsiny [Actual problems of medicine]. pp. 392–395. Available at:elib.grsmu.by/bitstream/handle/ files/22240/392-395z.pdf?sequence=1
  42. Nikolaieva, O. V., Bachurina, O. V. (2013). Mekhanizmy rozvytku atsetonemichnoho syndromu u ditei z patolohiieiu travnoi systemy [Mechanisms of development of acetonemic syndrome in children with pathology of the digestive system]. Ukrainskyi biofarmatsevtychnyi zhurnal [Ukrainian biopharmaceutical journal]. no. 4, 29 p. Available at:nbuv.gov.ua/UJRN/ubfj_2013_4_31
  43. Lysikov, Yu. A. (2012). Aminokisloty v pitanii cheloveka [Amino acids in human nutrition]. Eksperimentalnaya i klinicheskaya gastroenterologiya [Experimental and clinical gastroenterology]. Vol. 2, pp. 88–105. PMID:22808798
  44. Metreveli, T. V. (2005). Biokhimiya zhivotnykh: ucheb. Posobiye dlya studentov vuzov/pod red. N. S. Sheveleva [Biochemistry of animals: textbook. manual for university students/edited by N.S. Shevelev]. SPb: Lan, 295 p. Available at: search.rsl.ru/ru/record/01002683479
  45. Lemesheva, M. (2006). Aminokislotnoye pitaniye ptitsy [Poultry amino acid nutrition]. Zhivotnovodstvo Rossii [Livestock in Russia]. no. 11, pp. 25–27. Available at:polfamix. ucoz.ua/statti_nov/11-2006_04.pdf
  46. Ma, Y. B., Zhang, F. D., Wang, J., Wu, S. G., Q, G. H., Zhang, H. J. (2020). Effect of in ovo feeding of β‐ hydroxy‐β‐methylbutyrate on hatchability, muscle growth and performance in prenatal and posthatch broilers. Journal of the Science of Food and Agriculture. Vol. 2, no. 100, pp. 755–763. DOI:10.1002/jsfa.10080
AttachmentSize
PDF icon studenok_2_2021.pdf561.58 KB