You are here

Influence of antibiotic treatment duration on the development of antibiotic resistance

Avoidance of unnecessary antimicrobial administration is a key point of antimicrobial stewardship; knowing the optimal duration of therapy obviates over-treatment. In this article we have highlighted the results of modern research on the influence of the duration of antibiotic use on the success of treatment and the development of resistance of microorganisms. Foreign literary sources and the results of scientific research by experts in this field are analyzed. Based on the research results, the following conclusions were made. The results of modern studies on the duration of antibiotic use show that short-course antibiotic therapy is superior to usual long-course antimicrobial treatment. A short course of antibiotic therapy usually leads to the same positive clinical outcomes, a lower rate of antibiotic resistance and the number of clinical relapses. The two most important potential complications associated with the duration of antibiotic therapy are incomplete treatment and the emergence of antibiotic resistance. The time points used for antibiotic treatment (clinical or bacteriological cure, relapses, etc.) are subjective, complex and unreliable. The effectiveness of procalcitonin or other blood parameters for use in monitoring antibiotic treatment requires more focused studies. Despite the high relevance and publicity of various aspects of antibiotic therapy in the practice of human and animal healthcare, research on the efficacy and consequences of short-term antibiotic therapy in veterinary medicine is limited. More attention should be paid to this issue, especially in the field of animal husbandry.

Key words: antibiotic resistance, antibiotic, microorganisms, treatment scheme, animals, duration of antibiotic therapy, clinical result, relapses.

  1. Hur, B., Hardefeldt, L.Y., Verspoor, K.M., Baldwin, T., Gilkerson, J.R. (2022). Evaluating the dose, indication and agreement with guidelines of antimicrobial use in companion animal practice with natural language processing. JAC Antimicrob Resist., 4(1), pp. 194–203. PMID: 35156027. PMCID:PMC8827557. DOI:10.1093/jacamr/dlab194.
  2. Pérez-Serrano, R.M., Domínguez-Pérez, R.A., Ayala-Herrera, J.L., Luna-Jaramillo, A.E., Zaldivar-Lelo, de Larrea G., Solís-Sainz, J.C., García-Solís, P., Loyola-Rodríguez, J.P. (2020). Dental plaque microbiota of pet owners and their dogs as a shared source and reservoir of antimicrobial resistance genes. J Glob Antimicrob Resist., 21. pp. 285–290. PMID:32315776. DOI:10.1016/j.jgar.2020.03.025.
  3. Bhat A.H. (2021). Bacterial zoonoses transmitted by household pets and as reservoirs of antimicrobial resistant bacteria. Microb Pathog. 155. pp. 104891. PMID: 33878397. DOI:10.1016/j.micpath.2021.104891.
  4. Stefańska, I., Kwiecień, E., Kizerwetter-Świda, M., Chrobak-Chmiel, D., Rzewuska, M. (2022). Tetracycline, Macrolide and Lincosamide Resistance in Streptococcus canis Strains from Companion Animals and Its Genetic Determinants. Antibiotics (Basel). 11(8), pp. 1034–1046. PMID:36009903; PMCID: PMC9405182. DOI:10.3390/antibiotics11081034.
  5. Roscetto, E., Varriale, C., Galdiero, U., Esposito, C., Catania, M.R. (2021). Extended-Spectrum Beta-Lactamase-Producing and Carbapenem-Resistant Enterobacterales in Companion and Animal-Assisted Interventions Dogs. Int J Environ Res Public Health, 18(24), pp. 12952–12962. PMID: 34948564. PMCID: PMC8700946. DOI:10.3390/ijerph182412952.
  6. Haidar, R., Der Boghossian, A., Atiyeh, B. (2010). Duration of post-surgical antibiotics in chronic osteomyelitis: empiric or evidence-based? Int J Infect Dis., 9, pp. 752–758. PMID:20471296. DOI:10.1016/j. ijid.2010.01.005.
  7. Yoon, H.Y., Byun, J.Y., Park, K.H., Min, B.S., Kim, J.H. (2017). Sterile Pyometra in Two Dogs Immune Netw. 17(2), pp. 128–131. DOI:10.4110/ in.2017.17.2.128.
  8. Møller, Gundersen K., Nygaard, Jensen J., Bjerrum, L., Hansen, M.P. (2019). Short-course vs longcourse antibiotic treatment for community-acquired pneumonia. A literature review Basic Clin Pharmacol. Toxicol. 124(5), pp. 550–559. DOI:10.1111/bcpt.13205.
  9. Li, Q., Zhou, Q., Florez, I.D. (2022). ShortCourse vs Long-Course Antibiotic Therapy for Chil dren With Non severe Community-Acquired Pneumonia: А Systematic Review and Meta-analysis JAMA Pediatr. 176(12), pp. 1199–1207. DOI:10.1001/jamapediatrics.2022.4123.
  10. Holm, A.E., Llor, C., Bjerrum, L., Cordoba, G. (2020). Short- vs. Long-Course Antibiotic Treatment for Acute Streptococcal Pharyngitis. Systematic Review and Meta-Analysis of Randomized Controlled Trials Antibiotics (Basel). 9(11), 733 p. DOI:10.3390/ antibiotics9110733.
  11. Huang, C.Y., Hsieh, R.W., Yen, H.T., Hsu, T.C., Chen, C.Y., Chen, Y.C., Lee, C.C. (2019). Short-versus long-course antibiotics in osteomyelitis. A systematic review and meta-analysis. Int J Antimicrob Agents., 53(3), pp. 246–260. DOI:10.1016/j.ijantimicag.2019.01.007.
  12. Cooper, L., Stankiewicz, N., Sneddon, J., Smith, A., Seaton, R.A. (2022). Optimum length oftreatment with systemic antibiotics in adults with dental infections: a systematic review. Evid Based Dent. DOI:10.1038/s41432-022-0801-6.
  13. Gupta, S., Rajiah, P., Middlebrooks, E.H., Baruah, D., Carter, B.W., Burton, K.R., Chatterjee, A.R., Miller, M.M. (2018). Systematic review of the literature: Best practices. Academic Radiology. 25, (11), pp. 1481–1490. PMID: 30442379. DOI:10.1016/j. acra.2018.04.025.
  14. Samuel, R., Noguera, Mark J., Paredes, R., Parboosing, R., Singh, L., Naidoo, A., Gordon, M. (2016). HIV-1 Drug Resistance by Ultra-Deep Sequencing Following Short Course Zidovudine, Single-Dose Nevirapine, and Single-Dose Tenofovir with Emtricitabine for Prevention of Mother-to-Child Transmission. J. Acquir. Immune Defic. Syndr., 73(4), pp. 384–389. PMID: 27327263. PMCID: PMC5172515. DOI:10.1097/QAI.0000000000001116
  15. Palmer, S., Boltz,V.F., Chow, Y.J., Martinson,A.N., McIntyre, A.J., Gray, E.G., Hopley, J.M., Mayers, D., Robinson, P., Hall, B.D., Maldarelli, F., Coffin, M.J., Mellors, W.J. (2012). Short-course Combivir after single-dose nevirapine reduces but does not eliminate the emergence of nevirapine resistance in women. Antivir. Ther., 17(2), pp. 327–336. PMID: 2229 3443. PMCID: PMC6752704. DOI:10.3851/IMP1946
  16. Apparao, D., Oliveira, L., Ruegg, P.L. (2009). Relationship between results of in vitro susceptibility tests and outcomes following treatment with pirlimycin hydrochloride in cows with subclinical mastitis associated with gram-positive pathogen. J. Am. Vet. Med. Assoc., 234(11), pp. 1437–1446. PMID: 19480625. DOI:10.2460/javma.234.11.1437
  17. Bochniarz, M., Adaszek, L., Dzięgiel, B., Nowaczek,A., Wawron,W.,Dąbrowski,R.,Szczubiał,M., Winiarczyk, S. (2016). Factors responsible for subclinical mastitis in cows caused by Staphylococcus chromogenes and its susceptibility to antibiotics based on bap, fnbA, eno, mecA, tetK, and ermA genes. J. Dairy Sci., 99(12), pp. 9514–9520. PMID: 27692714. DOI:10.3168/jds.2016-11723
  18. Owens, W.E., Ray, C.H., Watts, J.L., Yancey, R.J. (1997). Comparison of success of antibiotic therapy during lactation and results of antimicrobial susceptibility tests for bovine mastitis. J. Dairy Sci., 80(2), pp. 313–317. PMID: 9058273. DOI:10.3168/jds. S0022-0302(97) 75940-X
  19. Aslantaş, Ö., Demir, C.J. (2016). Investigation of the antibiotic resistance and biofilm-forming ability of Staphylococcus aureus from subclinical bovine mastitis cases. Dairy Sci. 99(11), pp. 8607–8613. PMID: 27592437. DOI:10.3168/jds.2016-11310
  20. Hooton, T.M., Roberts, P.L., Stapleton, A.E. (2012). Cefpodoxime vs ciprofloxacin for short-course treatment of acute uncomplicated cystitis: a randomized trial. JAMA. 307(6), pp. 583– 589. PMID: 22318279. PMCID: PMC3736973. DOI:10.1001/jama.2012.80
  21. Dinh, A., Bouchand, F., Salomon, J., Bernard, L. (2016). Short-course antibiotic regimens: Up-to-date [Article in French]. Rev. Med. Interne. 37(7), pp. 466–472. PMID: 26775641. DOI:10.1016/j. revmed.2015.12.003
  22. Jia, Y., Chen, J., Liang, W., Xiong, Y., Peng, Z., Wang, G. (2022). Differences in Efficacy between Short- and Long-Course Antibiotic Agents for Joint Prosthesis Infection: A Systematic Review and Meta-Analysis. Surg Infect (Larchmt). 23(7), pp. 616–624. DOI:10.1089/ sur.2022.157
  23. Roberts, J.A., Kruger, P., Paterson, D.L. Lipman, J. (2008). Antibiotic resistance ‒ what’s dosing got to do with it? Crit Care Med. 36, pp. 2433–2440. PMID: 18596628. DOI:10.1097/ CCM.0b013e318180fe62
  24. Lee, R.A., Centor, R.M., Humphrey, L.L., Jokela, J.A., Andrews, R., Qaseem, A., Akl, E.A., Bledsoe, T.A., Forciea, M.A., Haeme, R., Kansagara, D.L., Marcucci, M., Miller, M.C., Obley, A.J. (2021). Appropriate Use of Short-Course Antibiotics in Common Infections: Best Practice Advice From the American College of Physicians. Ann Intern Med. 174 (6), pp. 822–827. DOI:10.7326/M20-7355.
  25. Li, X., Liu, C., Mao, Z., Li, Q., Qi, S., Zhou, F. (2021). Short-course versus long-courseantibiotic treatment in patients with uncomplicated gram-negative bacteremia: A systematic review and meta-analysis. J Clin Pharm Ther., 46(1), pp. 173–180. DOI:10.1111/ jcpt.13277.
  26. Olmos, C., Vilacosta, I., López, J., Sáez, C., Anguita, M., García-Granja, P.E., Sarriá, C., Silva, J., Álvarez-Álvarez, B., Martínez-Monzonis, M.A., Castillo, J.C., Seijas, J., López-Picado, A., Peral, V., Maroto, L., San Román, J.A. (2020). Short-course antibiotic regimen compared to conventional antibiotic treatment for gram-positive cocci infectiveendocarditis. randomized clinical trial (SATIE). BMC Infect Dis. 20(1), 417 p. DOI:10.1186/s12879-020-05132-1.
  27. Takahashi, N., Imaeda, T., Nakada, T.A., Oami, T., Abe, T., Yamao, Y., Nakagawa, S., Ogura, H., Shime, N., Matsushima, A., Fushimi, K. (2022). Short- versus long-course antibiotictherapy for sepsis a post hoc analysis of the nationwide cohort study. J Intensive Care., 10 (1), pp. 49–59. DOI:10.1186/s40560-022-00642-3.
  28. Trauer, J.M. Achar, J., Parpieva, N.,Khamraev, A., Denholm, J.T., Falzon, D., Jaramillo, E., Mesic, A., Cros, du P., McBryde, E.S. (2016). Modelling the effect of short-course multidrug-resistant tuberculo sis treatment in Karakalpakstan, Uzbekistan. BMC Med. 14(1), pp. 187–198. PMID: 27855693. PMCID: PMC5114735. DOI:10.1186/s12916-016-0723-2
  29. Moodley, R., Godec, T.R. (2016). Shortcourse treatment for multidrug-resistant tuberculosis: the STREAM trials. Eur. Respir. Rev. 25(139), pp. 29–35. MID: 26929418. PMCID: PMC9487666. DOI:10.1183/16000617.0080-2015.
  30. Piubello, A. Harouna, S.H., Souleymane, M.B. Boukary, I.,Morou, S., Daouda, M.,Hanki, Y., Deun,A.V. (2014). High cure rate with standardised short-course multidrug-resistant tuberculosis treatment in Niger: no relapses. Int. J. Tuberc. Lung Dis., 18(10), pp. 1188– 1194. PMID: 25216832. DOI:10.5588/ijtld.13.0075
  31. Chien, J.Y., Tsou, C.C., Chien, S.T., Yu, C.J., Hsueh, P.R. (2014). Direct observation therapy with appropriate treatment regimens was associated with a decline in second-line drug-resistant tuberculosis in Taiwan. J. Clin. Microbiol. Infect. Dis., 33(6), pp. 941–948. PMID: 24338066. DOI:10.1007/s10096- 013-2030-6
  32. Wang, K., Chen, S., Wang, X., Zhong, J., Wang, X., Huai, P., Wu, L., Wang, L., Jiang, S., Li, J., Peng, Y., Yao, Ma.W. (2014). Factors contributing to the high prevalence of multidrug-resistant tuberculosis among H. previously treated patients: a case-control study from China. Microb. Drug Resist. 20(4), pp. 294– 300. PMID: 24328894. DOI:10.1089/mdr.2013.0145
  33. Chien, J.Y., Lai, C.C., Tan, C.K., Chien, S.T., Yu, C.J. (2013). Hsueh P.R. Decline in rates of acquired multidrug-resistant tuberculosis after implementation of the directly observed therapy, short course (DOTS) and DOTS-Plus programmes in Taiwan. J. Antimicrob. Chemother, 68(8), pp. 1910–1916. PMID: 23580558. DOI:10.1093/jac/dkt103
  34. Gao, J., Ma, Y., Du, J., Zhu, G., Tan, S., Fu, Y., Ma, L., Zhang, L., Liu, F., Hu, D., Zhang, Y., Li, X., Li, L. (2016). Later emergence of acquired drug resistance and its effect on treatment outcome in patients treated with Standard Short-Course Chemotherapy for tuberculosis. BMC Pulm. Med. 16, pp. 26–36. PMID: 26846562. PMCID: PMC4743330. DOI:10.1186/s12890-016-0187-3
  35. Pasipanodya, J.G., Gumbo, T. (2013). A meta-analysis of self-administered vs directly observed therapy effect on microbiologic failure, relapse, and acquired drug resistance in tuberculosis patients. Clin. Infect. Dis. 57(1), pp. 21–31. PMID: 23487389. PMCID: PMC3669525. DOI:10.1093/cid/cit167
  36. Chotiprasitsakul, D., Han, J.H., Cosgrove, S.E., Harris, A.D., Lautenbach, E., Conley, A.T, Tolomeo, P., Wise, J., Tamma, P.D. (2018). Comparing the Outcomes of Adults With Enterobacteriaceae Bacteremia Receiving Short-Course Versus Prolonged-Course Antibiotic Therapy in a Multicenter, Propensity Score-Matched Cohort. Clin. Infect. Dis. 66(2), pp. 172–177. PMID: 29190320. PMCID: PMC5849997. DOI:10.1093/cid/cix767
  37. Pugh, R., Grant, C., Cooke, R.P., Dempsey, G. (2015). Short-course versus prolonged-course antibiotic therapy for hospital-acquired pneumonia in critically ill adults. Cochrane Database Syst. Rev. 8, pp. 75–77. PMCID: PMC7025798. DOI: 10.1002/ 14651858.CD007577.pub3. PMID: 26301604.
  38. Sandoval, C.P. (2016). Short-Course Versus Prolonged-Course Antibiotic Therapy for Hospital-Acquired Pneumonia in Critically Adults Crit. Care Nurse., 36(4), P. 82–93. PMID: 27481807. DOI:10.4037/ ccn2016840
  39. Pugh R., Grant C., Cooke R.P., Dempsey G. (2011). Short-course versus prolonged-course antibiotic therapy for hospital-acquired pneumonia in critically ill adults. Cochrane Database Syst. Rev. 5, pp. 8–10. PMID: 21975771. DOI:10.1002/14651858.CD007577. pub2
  40. Pugh, R.J., Cooke, R.P., Dempsey, G.J. (2010). Short course antibiotic therapy for Gram-negative hospital-acquired pneumonia in the critically ill. Hosp. Infect. 74(4), pp. 337–343. PMID: 20202717. DOI:10.1016/j.jhin.2009.10.009
  41. Deshpande, D., Srivastava, S., Gumbo, T.J. (2017). A programme to create short-course chemotherapy for pulmonary Mycobacterium avium disease based on pharmacokinetics/ pharmacodynamics and mathematical forecasting. J. Antimicrob. Chemother., 72 (suppl. 2), pp. 54– 60. PMID: 28922811. DOI:10.1093/jac/dkx309
  42. Pinzone, M.R., Cacopardo, B., Abbo, L., Nunnari, G. (2014). Duration of antimicrobial therapy in community acquired pneumonia: less is more. Sci. World Journal, 21, pp. 75–91. PMID: 24578660. PMCID: PMC3918712. DOI:10.1155/2014/759138
  43. Sutijono, D., Hom, J., Zehtabchi, S. (2011). Efficacy of 3-day versus 5-day antibiotic therapy for clinically diagnosed nonsevere pneumonia in children from developing countries. J. Emerg. Med., 18(5), pp. 244–250. PMID: 21394031. DOI:10.1097/ MEJ.0b013e328344fd90
  44. Chen, H.M., Wang, Y., Su, L.H., Chiu, C.H. (2013). Nontyphoid salmonella infection: microbiology, clinical features, and antimicrobial therapy. Pediatr. Neonatol. 54(3), pp. 147–152. PMID: 23597525. DOI:10.1016/j.pedneo.2013.01.010
  45. Khariwala, S.S., Le, B., Pierce, B.H., Vogel, R.I., Chipman, J.G. (2016). Antibiotic Use after Free Tissue Reconstruction of Head and Neck Defects: Short Course vs. Long Course. Surg. Infect. 17(1), pp. 100–105. PMID: 26501794. PMCID: PMC4855725. DOI:10.1089/sur.2015.131
  46. Mathur, P., Trikha, V., Farooque, K., Sharma, V., Jain, N., Bhardwaj, N., Sharma, S., Misra, M.C. (2013). Implementation of a short course of prophylactic antibiotic treatment for prevention of postoperative infections in clean orthopaedic surgeries. Indian J. Med. Res., 137(1), pp. 111–116. PMID: 23481059. PMCID: PMC3657872
  47. Oliva, A., Mascellino, M.T., Cipolla, A. D'Abramo, A., Rosa, De A., Savinelli, S., Ciardi, M.R., Mastroianni, C.M., Vullo, V. (2015). Therapeutic strategy for pandrug-resistant Klebsiella pneumoniae se vere infections: short-course treatment with colistin increases the in vivo and in vitro activity of double carbapenem regimen. Int. J. Infect. Dis., 33, pp. 132–134. PMID: 25597275. DOI:10.1016/j.ijid.2015.01.011
  48. Dawson-Hahn, E.E., Mickan, S., Onakpoya, I., Roberts, N., Kronman, M., C Butler, C., Thompson, M.J. (2017). Short-course versus long-course oral antibiotic treatment for infections treated in outpatient settings: a review of systematic reviews. Fam. Pract. 34(5), pp. 511–519. PMID: 28486675. PMCID: PMC6390420. DOI:10.1093/fampra/cmx037
  49. De Santis, V., Gresoiu, M., Corona, A., Wilson, P.R., Singer, M. (2015). Bacteraemia incidence, causative organisms and resistance patterns, antibiotic strategies and outcomes in a single university hospital ICU: continuing improvement between 2000 and 2013. J. Antimicrob. Chemother, 70(1), pp. 273–278. PMID: 25190722. DOI:10.1093/jac/dku338
  50. Vora, A., Krishnaprasad, K.J. (2017). Guiding Principles for the use of Fluroquinolones in Out-patient Community Settings of India: Panel Consensus. J. Assoc. Physicians India, 65(8), pp. 51–52. PMID: 28799307.
  51. Crotty, M.P., Meyers, S., Hampton, N.,Bledsoe, S., Ritchie, D.J., Buller, R.S., Storch, G.A., Kollef, M.H., Micek, S.T. (2015). Impact of antibacterials on subsequent resistance and clinical outcomes in adult patients with viral pneumonia: an opportunity for stewardship. Crit. Care. 18, pp. 19–24. PMID: 26577540. PMCID: PMC4650137. DOI:10.1186/s13054-015-1120-5
  52. Ong, D.S.Y., Frencken, J.F., Klein, Klouwenberg P.M.C., Juffermans, N., Poll, T., Bonten, M.J.M., Cremer, O.L. (2017). Short-Course Adjunctive Gentamicin as Empirical Therapy in Patients With Severe Sepsis and Septic Shock: A Prospective Observational Cohort Study. Clin. Infect. Dis. 64(12), pp. 1731–1736. PMID: 28329088. DOI:10.1093/cid/cix186
  53. Sartelli, M., Catena, F., Ansaloni, L., Coccolini, F., Saverio, S.D., Griffiths, E.A. (2016). Duration of Antimicrobial Therapy in Treating Complicated Intra-Abdominal Infections: A Comprehensive Review. Surg. Infect. 17(1), pp. 9–12. PMID: 26468904. DOI:10.1089/sur.2015. 130
  54. Pinzone, M.R., Cacopardo, B., Abbo, L., Nunnari, G. (2014). Optimal duration of antimicrobial therapy in ventilator-associated pneumonia: What is the role for procalcitonin? J. Glob. Antimicrob. Resist., 2(4), pp. 239–244. PMID: 27873682. DOI:10.1016/j. jgar.2014.06.004
  55. Esposito, S., Esposito, I., Leone, S. (2012). Considerations of antibiotic therapy duration in community- and hospital-acquired bacterial infections. J. Antimicrob. Chemother., 67(11), pp. 2570-2575. PMID: 22833640. DOI:10.1093/jac/dks277
  56. Wayne, A. Davis, M., Sinnott, V.B., Bracker, K. (2017). Outcomes in dogs withuncomplicated, presumptive bacterial pneumonia treated with short or long courseantibiotics. Can Vet J., 58(6), pp. 610–613. PMID: 28588336;
  57. Kaushik, A., Ammerman, N.C., Tasneen, R., Lachau-Durand, S., Andries, K., Nuermberger, E. (2022). Efficacy of Long-Acting Bedaquiline Regimens in a Mouse Model of TuberculosisPreventive Therapy. Am J Respir Crit Care Med., 205(5), pp. 570– 579. DOI:10.1164/ rccm.202012-4541OC.
  58. Allerton, F., Pouwels, K.B., Bazelle, J., Caddy, S., Cauvin, A., De Risio, L., Swann, J., Warland, J., Kent, A. (2021). Prospective trial of different antimicrobial treatmentdurations for presumptive canine urinary tract infections. BMC Vet Res. 17(1), pp. 299–241. DOI:10.1186/s 12917-021-02974-y. PMID: 34488771; PMCID: PMC8422737.
  59. Lappin, M.R., Blondeau, J., Boothe, D., Breitschwerdt, E.B., Guardabassi, L., Lloyd, D.H., Papich, M.G., Rankin, S.C., Sykes, J.E., Turnidge, J., Weese, J.S. (2017). Antimicrobial use Guidelines for Treatment of Respiratory Tract Disease in Dogs and Cats: Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases. J Vet Intern Med., 31(2), pp. 279–294. PMID: 28185306. PMCID: PMC5354050. DOI:10.1111/jvim.14627
  60. Weese, J.S., Blondeau, .J, Boothe, D., Guardabassi, L.G., Gumley, N., Papich, M., Jessen, L.R., Lappin, M., Rankin, S., Westropp, J.L., Sykes, J. (2019). International Society for companion animal infectious diseases (ISCAID) guidelines for the diagnosis and management of bacterial urinary tract infections in dogs and cats. Vet J., 247, pp. 8–25. PMID: 30971357. DOI:10.1016/j. tvjl.2019.02.008
PDF icon shahanenko_1_2023.pdf481.58 KB