You are here

Modern methods for the determination of pesticide residues in beekeeping products and for the diagnostics of bee poisoning

Intensification of agricultural production is associated with the use of a significant amount of pesticides, which negatively affects the environment and human health, and food products, including beekeeping products, accordingly require mandatory control of residual amounts of pesticides. This article provides a comparative analysis of the available chromatographic methods for pesticide residue research. The necessity of using modern chromatographic methods to determine residual amounts of pesticides in samples of dead bees and beekeeping products is well-founded. Chromatographic methods of studying these indicators in different types of matrices are a priority. They are effective methods of analysis, widely used due to their versatility - they allow the analysis of complex inorganic and organic compounds in various aggregate states. But one of the most common modern methods for pesticide determination is gas and liquid three-quadrupole tandem chromatography-mass spectrometry (GC and/or LC-MS/MS). The GC-MS/MS method provides quantitative determination of analytes at a level that is an order of magnitude higher than, for example, the gas single quadrupole mass spectrometry method. Modern methods of gas and liquid chromatography in combination with quadrupoletime-of-flight mass spectrometric detection (LC/Q-TOF/MS or GC/ Q-TOF/MS) also allow qualitative and quantitative multicomponent analysis of pesticides in beekeeping products. GC and LC systems combined with high-resolution Orbitrap MS (GC-HRMS(Q-Orbitrap)/LC-HRMS (Q-Orbitrap)) have higher sensitivity, enabling ultra-trace detection, and are the most sensitive screening method for multicomponent determination of pesticide residues. Thus, the latest chromatographic methods are able to meet the needs of analytical testing and research laboratories in the field of food safety, including beekeeping products.

Key words: chromatographic methods, thin-layer chromatography, gas chromatography, liquid chromatography, mass spectrometry, multi-component analysis, pesticides, honey, dead bees.

  1. Rekha Naik, S.N., Prasad, R. (2006). Pesticide residue in organic and conventional food-risk analysis. Chem. Health Saf. Vol. 13, pp. 12–19. DOI:10.1016/ j.chs.2005.01.012.
  2. Ye, M., Beach, J., Martin, J.W., Senthilselvan, A. (2013). Occupational pesticide exposures and respiratory health. Int. J. Environ. Res. Public Health. Vol. 10 (12), pp. 6442–6471. DOI:10.3390/ijerph10126442.
  3. Garcia, F.P., Cortés Ascencio, S.Y., Gaytan Oyarzun, J.C., Ceruelo Hernandez, A., Vazquez Alavarado, P. (2012). Pesticides: classification, uses and toxicity. Measures of exposure and genotoxic risks. Res. J. Environ. Sci. Toxicol. Vol. 1 (11), pp. 279–293. (Accessed 22 June 2022). Available at:www. semanticscholar.org/paper/ Pesticides%3A-classification%2C-uses-and-toxicity.-of-Garc%C3%ADa-Ascencio/225e6c4ebada0757fc67ef46d06a2347dec00335?p2 df.
  4. Ravindran, J., Pankajshan, M., Puthur, S. (2016). Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip. Toxicol. Vol. 9, pp. 90–100. (Accessed 22 June 2022). Available at:www. sciendo.com/article/10.1515/intox-2016-0012.
  5. Sarbani, G., Anirudha, G., Gouri, D.S., Surya, B.P. (2002). Mutagenic effects of carbosulfan, a carbamate pesticide. Mutat. Res., Genet. Toxicol. Environ. Mutagen. Vol. 519, pp. 75–82. (Accessed 21 June 2022). Available at:www. sciencedirect.com/science/article/ abs/pii/S1383571802001146?via%3Dihub.
  6. Shimshoni, J.A. (2019). Pesticide distribution and depletion kinetic determination in honey and beeswax. Model for pesticide occurrence and distribution in beehive products. PLoS ONE 14 (2). DOI:10.1371/ journal.pone.021263.
  7. Johnson, R.M., Ellis, M.D., Mullin, C.A., Frazier, M. (2010). Pesticides and honey bee toxicity – USA. Apidologie. pp. 312–331. DOI:10.1051/apido/ 201001841.
  8. Calatayud-Vernich, P., Calatayud, F., Simó, E. (2019). A two-year monitoring of pesticide hazard inhive: High honey bee mortality rates during insecticide poisoning episodes in apiaries located nearagricultural settings. J. Chemosphere. Vol. 232, pp. 471–480. DOI:10.1016/j.chemosphere.2019.05.170.
  9. Regulation (EC) № 396/2005 of the European Parliament and of the Council on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/ EEC. OJ L 70, 16.03.2005, pp. 1–16. (Accessed 20 June 2022). Available at:eur-lex.europa.eu/legal-content/EN/ ALL/?uri=celex%3A32005R0396.
  10. Commission Directive 2006/125/EC on processed cereal-based foods and baby foods for infants and young children. OJ L 339, 6.12.2006, pp. 16–35. (Accessed 20 June 2022). Available at:data.europa.eu/ eli/dir/2006/125/oj.
  11. Pesticide residues in food. WHO. 2018. (Accessed 10 June 2022). Available at: www.who. int/en/news-room/fact-sheets/detail/pesticide-residues-in-food.
  12. Gupta S., Rajiah P., Middlebrooks E.H., Baruah D., Carter B.W., Burton K.R., Chatterjee A.R., Miller M.M. (2018). Systematic Review of the Literature: Best Practices, Academic Radiology. Vol. 25 (11), pp. 1481–1490. DOI:10.1016/j.acra. 2018.04.025.
  13. Commission Directive 2002/63/EC of 11 July 2002 Еstablishing Community methods of sampling for the official control of pesticide residues in and on products of plant and animal origin and repealing Directive 79/700/EEC (Text with EEA relevance). OJ L 187, 16.7.2002, pp. 30–43. (Accessed 20 June 2022). Available at: eur-lex.europa.eu/legal-content/EN/ ALL/?uri=CELEX:32002L0063.
  14. The International Code of Conduct on Pesticide Management.(2014). WHO/FAO. Rome, 40 p. (Accessed 10 June 2022). Available at:www.who.int/ publications/i/item/9789251085493.
  15. Guidance SANTE 11312/2021 – Analytical quality control and method validation procedures for pesticide residues analysis in food and feed. (Accessed 19 June 2022). Available at:ec.europa.eu/food/ system/files/2022-02/pesticides_mrl_ guidelines_wrkdoc_2021-11312.pdf.
  16. Jackie. (2020). Basics & Fundamentals: Gas Chromatography. Shimadzu 21. (Accessed 21 June 2022). Available at:www.shimadzu.eu.com/sites/shimadzu. seg/files/SEG/c10ge082-GC-Basics-and-Fundamentals.pdf.
  17. Md. Musfiqur, Rahman., El-Aty, A.M.A. (2015). Basic Overview Gas on Chromatography Columns Chemistry. Wiley Online Library. Chapter 3. Vol. 3, pp. 823–834. DOI:10.1002/9783527678129. assep024.
  18. Cazes, J., Scott, R.P.W. (2002). Chromatography Theory. New York/ Basel: Marsel Dekker, Inc, 477 p. (in English). DOI:10.1201/9780367800543.
  19. Coskun, O. (2016). Separation techniques: Chromatograph. Noth Clin Istanb. Vol. 3(2), pp. 156–160. DOI:10.14744/nci.2016.32757.
  20. Basic principles of gas chromatography. (1977). J. of Chromatography Libr. Vol. 10, pp. 1–31. DOI:10.1016/S0301-4770(08)60223-7.
  21. McNair, H.M., Miller, J.M., Snow, N.H. (2019). Basic gas chromatography, Third Edition. Wiley, 265 p. (in English). DOI:10.1002/9781119450795.
  22. Colin, F. Poole (2003). Thin-layer chromatography: challenges and opportunities. J. of Chromatography Libr. Vol. 1000 (1-2), pp. 963–984. DOI:10. 1016/S0021-9673(03)00435-7.
  23. Lewis, S.W., Lenehan, C.E. (2013). Liquid and Thin-Layer Chromatography. Encyclopedia of Forensic Sciences, рр. 586–589. DOI:10.1016/B978-0-12- 382165-2.00246-4.
  24. Souza Tette, P.A., Guidi, L.R., De Abreu Glória, M.B., Fernandes, C. (2016). Pesticides in honey: A review on chromatographic analytical methods. Talanta. Vol. 149, pp.124–141. DOI:10.1016/j.talanta.2015.11.045.
  25. Dushanka, M. (2022). Thin-layer chromatography in the authenticity testing of bee-products. J. of Chromatography B. Vol. 1188. DOI:10.1016/j. jchromb.2021. 123068.
  26. Prokopov, S.V., Kurbatova, S.V., Davankov, V.A. (2012). Chromatographic retention of adamantylamidrazones and triazoles by octadecyl silica gel and hypercrosslinked polystyrenes from water-acetonitrile solutions.Russ. J. Phys. Chem. Vol. 86, pp. 852–859. DOI:10.1134/S0036024412050299.
  27. Thomas, H. Walter., Iraneta P., Capparella M. (2005). Mechanism of retention loss when C8 and C18 HPLC columns are used with highly aqueous mobile phases. J. of Chromatography A. Vol. 1075 (1–2), pp. 177–183. DOI:10.1016/j.chro ma.2005.04.039.
  28. Shu-ying, Han., Liang, C., Zou, K. (2012). Influence of variation in mobile phase pH and solute pKa with the change of organic modifier fraction on QSRRs of hydrophobicity and RP-HPLC retention of weakly acidic compounds. Talanta. Vol. 101, pp. 64–70. DOI:10.1016/j.talanta.2012.08.051.
  29. Hamish, Small. (2013). Landmarks in the Evolution of Ion Chromatography LCGC Supplements. Special Issues-04-01-2013. Vol. 31 (4), pp. 8–15. (Accessed 23 June 2022). Available at: www.chromatographyonline.com/view/landmarks-evolution-ion-chromatography.
  30. Haddad, P.R., Jackson, P.E. (1990). Ion chromatography – principles and applications. Journal of Chromatography Library. Vol. 46, pp. 319–320. (in English). DOI:10.1016/0021-9673(93)80015-Z.
  31. Castillo, M. (2011). An evaluation method for determination of non-polar pesticide residues in animal fat samples by using dispersive solid-phase extraction clean-up and GC-MS. Anal. Bioanal. Chem. Vol. 400 (5), pp. 1315–1328. DOI:10.1 007/s00216-011-4656-5.
  32. McGown, S.R. (1990). Basic gas chromatography-mass spectrometry: Principles and techniques. J. of Biochem. and Biophys. Methods. Vol. 20, pp. 269–270. DOI:10.1016/0165-022x(90)90085-q.
  33. Rose, M.E. (1989). Basic Gas Chromatography-Mass Spectrometry. Analytica Chimica Acta.Vol. 225, pp. 456–457. DOI:10.1016/s0003-2670(00)84638-3.
  34. Sneddon, J., Masuram, S., Richert, J.C. (2007). Gas chromatography-mass spectrometry-basic principles, instrumentation and selected applications for detection of organic compounds. Analytical Letters. DOI:10.1080/00032710701300648.
  35. Tae, Woong Na., Hyung-Ju, Seo., Su-Nyeong, Jang. (2022). Multi-residue analytical method for detecting pesticides, veterinary drugs, and mycotoxins in feed using liquid- and gas chromatography coupled with mass shectrometry. J. of Chromatography A. DOI:10.1016/j.chroma.2022.463257.
  36. Roboz, J. (2016). A History of Ion Current Detectors for Mass Spectrometry. The Encyclopedia of Mass Spectrometry. Vol. 9, pp. 183–188. DOI:10.1016/ B978-0-08-043848-1.00023-7.
  37. Peter, Q.T., Mondello, L. (2020). Detectors and basic data analysis. Separation Science and Technology. Vol. 12 (6), pp. 205–227. Doi:10.1016/B978-0-12- 813745-1.00006-4.
  38. Hakme, E., Lozano, A., Gómez-Ramos, M.M., Hernando, M.D., Fernández-Alba, A.R. (2017). Non-target evaluation of contaminants in honey bees and pollen samples by gas chromatography time-offlight mass spectrometry. Chemosphere. Vol. 184, pp. 1310–1319. DOI:10.1016/j.chemosphere.2017.06.089.
  39. Richard, A. Yost. (2022). The triple quadrupole: Innovation, serendipity and persistence. Journal of Mass Spectrometry and Advances in the Clinical Lab. Vol. 24, pp. 90–99. DOI:10.1016/j.jmsacl.2022.05.001.
  40. Wiest, L., Buleté, A., Giroud, B. (2011). Multi-residue analysis of 80 environmental contaminants in honeys, honeybees and pollens by one extraction procedure followed by liquid and gas chromatography coupled with mass spectrometric detection. Journal of Chromatography A. Vol. 1218 (34), pp. 5743–5756. DOI:10.1016/j.chroma.2011.06.079.
  41. Passarella, S., Guerriero, E., Quici, L. (2022). Dataset of PAHs determined in home-made honey samples collected in Central Italy by means of DLLMEGC-MS and cluster analysis for studying the source apportionment. Data in Brief. Vol. 42. DOI:10.1016/j. dib.2022.108136.
  42. Melina, P. Michlig., Merke, J., Adriana, C. Pacini., Emanuel, M. Orellano., Horacio, R. Beldoménico., María, R. Repetti. (2018). Determination of imidacloprid in beehive samples by UHPLC-MS/MS. Microchemical Journal. Vol. 143, pp. 72–81. DOI:10.1016/j. microc.2018.07.027.
  43. aría, Del Mar., Gómez-Ramos, Lukasz Rajsk. (2015). Liquid chromatography Orbitrap mass spectrometry with simultaneous full scan and tandem MS/MS for highly selective pesticide residue analysis. Anal. Bioanal. Chem. 407(21), pp. 6317–6326. DOI:10.1007/s00216-015-8709-z.
  44. Martínez-Domínguez. (2016). Multi-Class Methodology to Determine Pesticides and Mycotoxins in Green Tea and Royal Jelly Supplements by Liquid Chromatography Coupled to Orbitrap High Resolution Mass Spectrometry. Food Chemistry. Vol. 197, pp. 907–915. DOI:10.1016/j.foodchem.2015.11.070.
  45. Belarbi, S., Vivier, M., Zaghouani, W. (2021). Comparison of new approach of GC-HRMS (Q-Orbitrap) to GC–MS/MS (triple-quadrupole) in analyzing the pesticide residues and contaminants in complex food matrices. Food Chemistry. Vol. 359. DOI:10.1016/j. foodchem.2021.129932.
AttachmentSize
PDF icon omelchun_2_2022.pdf505.54 KB