You are here

Perspective directions of conservative treatment of bitches with breast tumors (review information)

The problem of treating tumors in dogs remains relevant due to the complexity of pathogenetic cascades, lack of common methodological approaches to diagnosis and treatment of cancer patients, insufficient number of animals in groups, the described nature of the results, incorrect "mechanical" borrowing of therapeutic protocols from human medicine. The proposed treatment regimens do not provide the desired results, there is a steady trend to increase the number of small pets with breast tumors. Therefore, it is important to find alternative treatments for dogs with breast neoplasms, among which, first of all, should be noted the use of nonsteroidal anti-inflammatory drugs, which cause a positive effect by inhibiting the expression of cyclooxygenase-2, activating apoptosis and inhibiting cancer cell migration. Potentially effective therapeutic methods are electroporation and electrochemotherapy, which can significantly increase the concentration of chemotherapeutic agents in cancer cells against the background of minimal toxicity to healthy tissues. The important role of hypercoagulation in the mechanisms of development and progression of breast tumors in dogs justifies the use of antithrombotic therapy in cancer patients, especially low molecular weight heparins, which can improve the effectiveness of therapeutic protocols and prevent tumor metastasis. It is shown that these methods as part of complex treatment regimens increase the effectiveness of conventional protocols of chemotherapy and radiation therapy, as well as surgery. However, further studies of the pathogenetic aspects of these treatments for breast tumors in bitches and the possibility of combining them with other therapeutic regimens are needed. Key words: bitches, breast neoplasms, treatment protocols, nonsteroidal anti-inflammatory drugs, electroporation, antithrombotic therapy.

  1. Gray, M., Meehan, J., Martínez-Pérez, C., Kay, C., Turnbull, A.K., Morrison, L.R., Pang, L.Y., Argyle, D. (2020). Naturally-occurring canine mammary tumors as a translational model for human breast cancer. Frontiers in Oncology. Vol. 10, Article 617. Available at:htths://doi. org/10.3389/fonc.2020.00617
  2. Abadie, J., Nguyen, F., Loussouarn, D., Peña, L., Gama, A. (2018). Canine invasive mammary carcinomas as models of human breast cancer. Part 2: immunophenotypes and prognostic significance. Breast Cancer Research and Treatment. Vol. 167 (2), pp. 459–468. Available at:htths://doi. org/10.1007/s10549-017-4542-8
  3. Burton, J., Khanna, C. (2014). The role of clinical trials in veterinary oncology. The Veterinary Clinics of North America. Small Animal Practice. Vol. 44 (5), pp. 977–987. Available at:htths://doi.org/10.1016/j.cvsm.2014.05.006
  4. Klopfleisch, R., Kohn, B., Gruber, A.D. (2016). Mechanisms of tumour resistance against chemotherapeutic agents in veterinary oncology. Veterinary Journal. Vol. 207, pp. 63–72. Available at:htths://doi.org/10.1016/j.tvjl.2015.06.015
  5. Sahabi, K., Rajendren, S.K., Foong, J.N., Selvarajah, G.T. (2018). Mammary gland tumours in the dog, a spontaneous tumour model of comparative value to human breast cancer. Pertanika Journal of Tropical Agricultural Science.Vol. 41 (2), pp. 541–574.
  6. Pinho, S.S., Carvalho, S., Cabral, J., Reis, C.A., Gärtner, F. (2012). Canine tumors: a spontaneous animal model of human carcinogenesis. Translational Research: The Journal of Laboratory and Clinical Medicine. Vol. 159 (3), pp. 165–172. Available at:htths://doi.org/10.1016/j. trsl.2011.11.005
  7. Kim, T.M., Yang, I.S., Seung, B.J., Lee, S., Kim, D., Ha, Y.J., Seo, M.K., Kim, K.K., Kim, H.S., Cheong, J.H., Sur, J.H., Nam, H., Kim, S. (2020). Cross-species oncogenic signatures of breast cancer in canine mammary tumors. Nature Communications. Vol. 11 (1), 3616 p. Available at:htths://doi.org/10.1038/s41467-020-17458-0
  8. Gupta, S.C., Sung, B., Prasad, S.,Webb, L.J., Aggarwal, B.B. (2013). Cancer drug discovery by repurposing: teaching new tricks to old dogs. Trends in Pharmacological Sciences.Vol. 34 (9), pp. 508–517. Available at:htths://doi. org/10.1016/j.tips.2013.06.005
  9. Shah, K., Rawal, R.M. (2019). Genetic and epigenetic modulation of drug resistance in cancer: challenges and opportunities. Current Drug Metabolism. Vol. 20 (14), pp. 1114–1131. Available at:htths://doi.org/10.2174/138920022 1666200103111539
  10. Raduly L., Cojocneanu-Petric R., Sarpataki O., Chira S., Atanasov A.G., Braicu C., Berindan-Neagoe I., Marcus I. (2018). Canis lupus familiaris as relevant animal model for breast cancer – a comparative oncology review. Animal Science Papers & Reports. Vol. 36 (2), pp. 119–148.
  11. Queiroga, F.L., Perez-Alenza, M.D., Silvan, G., Peña, L., Lopes, C., Illera, J.C. (2005). Cox-2 levels in canine mammary tumors, including inflammatory mammary carcinoma: clinicopathological features and prognostic significance. Anticancer research. Vol. 25(6B), pp. 4269–4275.
  12. Clemente, M., De Andrés, P.J., Peña, L., PérezAlenza, M.D. (2009). Survival time of dogs with inflammatory mammary cancer treated with palliative therapy alone or palliative therapy plus chemotherapy. Veterinary Record. Vol. 165, pp. 78–81. Available at:htths://doi.org/10.1136/ vetrec.165.3.78
  13. Marcinczyk, N., Jarmoc, D., Leszczynska, A., Zakrzeska, A., Kramkowski, K., Strawa, J., GromotowiczPoplawska, A., Chabielska, E., Tomczyk, M. (2017). Antithrombotic Potential of Tormentil Extract in Animal Models. Frontiers Pharmacology. Vol. 8, 534 p. Available at:htths://doi.org/10.3389/fphar.2017.00534
  14. Smith, S.A. (2012). Antithrombotic therapy. Topics in companion animal medicine. Vol. 27(2), pp. 88–94. Available at:https://doi.org/10.1053/j.tcam.2012.08.002
  15. Sharp, C.R., de Laforcade, A.M., Koenigshof, A.M., Lynch, A.M., Thomason, J.M. (2019). Consensus on the Rational Use of Antithrombotics in Veterinary Critical Care (CURATIVE): Domain 4-Refining and monitoring antithrombotic therapies. Journal of veterinary emergency and critical care. Vol. 29(1), pp. 75–87. Available at:https:// doi.org/10.1111/vec.12794
  16. Harris, R.E. (2009). Cyclooxygenase-2 (cox-2) blockade in the chemoprevention of cancers of the colon, breast, prostate, and lung. Inflammopharmacology. Vol. 17(2), pp. 55–67. Available at:htths://doi.org/10.1007/ s10787-009-8049-8
  17. Szweda, M., Rychlik, A., Babińska, I., Pomianowski, A. (2019). Significance of cyclooxygenase-2 in onco-genesis. Journal of Veterinary Research. Vol. 63 (2), pp. 215–224. Available at:htths://doi.org/10.2478/jvetres-2019-0030
  18. de Groot, D.J.A., de Vries, E.G.E., Groen, H.J.M., de Jong, S. (2007). Non-steroidal anti-inflammatory drugs to potentiate chemotherapy effects: From lab to clinic. Critical Reviews in Oncology/Hematology. Vol. 61 (1), pp. 52–69. Available at:htths://doi.org/10.1016/j.critrevonc.2006.07.001
  19. Moris, D., Kontos, M., Spartalis, E., Fentiman, I.S. (2016). The role of NSAIDs in breast cancer prevention and relapse: current evidence and future perspectives. Breast Care (Basel). Vol. 11 (5), pp.339–344. Available at:htths://doi. org/10.1159/000452315
  20. Tsuchiya, H., Mizogami, M. (2020). Membrane interactivity of non-steroidal anti-inflammatory drugs: a literature review. Journal of Advances in Medicine and Medical Research. Vol. 31 (9), pp. 1–30. Available at:htths:// doi.org/10.9734/jammr/2019/v31i930320
  21. Hurst, E.A., Pang, L.Y., Argyle, D.J. (2019). The selective cyclooxygenase‐2 inhibitor mavacoxib (Trocoxil) exerts anti‐tumour effects in vitro independent of cyclooxygenase‐2 expression levels. Veterinary Comparative Oncology. Vol. 17, pp. 194–207. Available at:htths://doi. org/10.1111/vco.12470
  22. Tamura, D., Saito, T., Murata, K., Kawashima, M., Asano, R. (2015). Celecoxib exerts antitumor effects in canine mammary tumor cells via COX‑2‑independent mechanisms. International Journal of Oncology. Vol. 46, pp. 1393–1404. Available at:htths://doi.org/10.3892/ijo.2015.2820
  23. Fecker, L.F., Stockfleth, E., Nindl, I., Ulrich, C., Forschner, T., Eberle, J. (2007). The role of apoptosis in therapy and prophylaxis of epithelial tumours by nonsteroidal anti-inflammatory drugs (NSAIDs). The British Journal of Dermatology.Vol. 156 (3). pp. 25–33. Available at:htths://doi. org/10.1111/j.1365-2133.2007.07856.xе
  24. Rai, N., Sarkar, M., Raha, S. (2015). Piroxicam, a traditional non-steroidal anti-inflammatory drug (NSAID) causes apoptosis by ROS mediated Akt activation. Pharmacological Reports. Vol. 67, pp. 1215–1223. Available at:htths://doi.org/10.1016/j.pharep.2015.05.012
  25. Iturriaga, M.P., Paredes, R., Arias, J.I., Torres, C.G. (2017). Meloxicam decreases the migration and invasion of CF41.Mg canine mammary carcinoma cells. OncologyLetters. Vol. 14 (2), pp. 2198–2206. Available at:htths://doi.org/10.3892/ol.2017.6400
  26. Yin, T., Wang, G., Ye, T., Wang, Y. (2016). Sulindac, a non-steroidal anti-inflammatory drug, mediates breast cancer inhibition as an immune modulator.Scientific Reports. Vol. 6, pp. 19534. Available at:htths://doi.org/10.1038/srep19534
  27. Chon, E., Mccartan, L., Kubicek, L.N., Vail, D.M. (2012). Safety evaluation of combination toceranib phosphate (Palladia®) and piroxicam in tumour-bearing dogs (excluding mast cell tumours): a phase I dose-finding study. Veterinary and Comparative Oncology. Vol. 10 (3), pp. 184–193. Available at:htths://doi.org/10.1111/j.1476- 5829.2011.00265.x
  28. Sumanasekera, W., Nethery, W., Tran, L., Pillai, G. (2018). Low molecular weight heparin as a therapeutic tool for cancer; special emphasis on breast cancer.Biomedical Journal of Scientific and Technical Research. Vol. 11, pp. 8351–8358. Available at:htths://doi.org/10.26717/ BJSTR.2018.11.002064
  29. Vignoli, A., Marchetti, M., Russo, L., Cantalino, E., Diani, E., Bonacina, G., Falanga, A.(2011). LMWH Bemiparin and ULMWH RO-14 reduce the endothelial angiogenic features elicited by leukemia, lung cancer, or breast cancer cells. Cancer Investigation. Vol. 29, pp. 153–161. Available at:htths://doi.org/10.3109/07357907.2010.543217
  30. Markosyan, N., Chen, E.P., Evans, R.A., Ndong, V., Vonderheide, R.H., Smyth, E.M. (2013). Mammary carcinoma cell derived cyclooxygenase 2 suppresses tumor immune surveillance by enhancing intratumoral immune checkpoint activity. Breast Cancer Research. Vol. 15 (5), 75 p. Available at:htths://doi.org/10.1186/bcr3469
  31. Yoshitake, R., Saeki, K., Watanabe, M., Nakaoka, N., Ong, S. M., Hanafusa, M., Choisunirachon, N., Fujita, N., Nishimura, R., Nakagawa, T. (2017). Molecular investigation of the direct anti-tumour effects of nonsteroidal antiinflammatory drugs in a panel of canine cancer cell lines. The Veterinary Journal. Vol. 221, pp. 38–47. Available at: htths:// doi.org/10.1016/j.tvjl.2017.02.001
  32. Bakirel, T., Alkan, F.Ü., Üstüner, O., Çinar, S., Yildirim, F., Erten, G., Bakirel, U. (2016). Synergistic growth inhibitory effect of deracoxib with doxorubicin against a canine mammary tumor cell line, CMT-U27. Journal of Veterinary Medical Science. Vol. 78, pp. 657–668. Available at:htths://doi.org/10.1292/jvms.15-0387
  33. Bakirel, T., Ustun Alkan, F., Ustuner, O., Çinar, S., Anlas, C., Bilge Sari, A. (2017). Response of cultured normal canine mammary epithelial cells to deracoxib-oxorubicin combination. Acta Veterinaria Hungarica. Vol. 65 (3), pp. 366–381.
  34. Üstün Alkan, F., Bakirel, T., Üstüner, O., Yardibi, H. (2014). In vitro effects of doxorubicin and deracoxib on oxidative-stress-related parameters in canine mammary carcinoma cells. Acta Veterinaria Hungarica. Vol. 62 (3), pp. 372–385.
  35. Hiľovská, L., Jendželovský, R., Fedoročko, P. (2015). Potencyofnon-steroidalanti-inflammatory drugs in chemotherapy (Review). Molecular and Clinical Oncology. Vol. 3, pp. 3–12. Available at:htths://doi.org/10.3892/ mco.2014.446
  36. Salehifar, E., Hosseinimehr, S.J. (2016). The use of cyclooxygenase-2 inhibitors for improvement of efficacy of radiotherapy in cancers. Drug Discovery Today. Vol. 21 (4), pp. 654–662. Available at:htths://doi.org/10.1016/j. drudis.2016.02.019
  37. Rossi, F., Sabattini, S., Vascellari, M., Marconato, L. (2018). The impact of toceranib, piroxicam and thalidomide with or without hypofractionated radiation therapy on clinical outcome in dogs with inflammatory mammary carcinoma. Veterinary and Comparative Oncology. Vol. 16 (4), pp. 497– 504. Available at:htths://doi.org/10.1111/vco.12407
  38. Pang, L.Y., Argyle, S.A., Kamida, A.,Morrison, K.О., Argyle, D.J. (2014). The long-acting COX-2 inhibitor mavacoxib (Trocoxil™) has anti-proliferative and proapoptotic effects on canine cancer cell lines and cancer stem cells in vitro. BMC Veterinary Research. Vol. 10, 184 p. Available at:htths://doi.org/10.1186/s12917-014-0184-9
  39. de M Souza, C.H., Toledo-Piza, E., Amorin, R., Barboza, A., Tobias, K.M. (2009). Inflammatory mammary carcinoma in 12 dogs: clinical features, cyclooxygenase-2 expression, and response to piroxicam treatment. The Canadian Veterinary Journal. Vol. 50 (5), pp. 506–510.
  40. Arenas, C., Peña, L., Granados-Soler, J.L., Pérez-Alenza, M.D. (2016). Adjuvant therapy for highly malignant canine mammary tumours: Cox-2 inhibitor versus chemotherapy: a case-control prospective study. The Veterinary Record. Vol. 179 (5), 125 p. Available at: htths:// doi.org/10.1136/vr.103398
AttachmentSize
PDF icon bilyi_2_2020.pdf544.3 KB