You are here

Radiological and pathochemical characteristics of osteoporosis process in rabbits

Various bone and joint pathology is quite common among companion animals, a significant risk factor for which is considered to be a violation of bone metabolism. The aim of the work is to determine radiological and pathochemical criteria in the dynamics of osteoporosis process in the model of rabbits. The experimental (n = 18) and control (n = 9) groups of animals were formed. Experimental osteoporosis in rabbits of the experimental group was caused by the administration of 0.4% solution of dexamethasone (4 mg / ml) (KRKA, Slovenia) for the 21st day at a dose of 1.2 mg / kg body weight 1 time / day. Control animals were injected with saline. Blood samples for biochemical studies were taken before the induction of osteoporosis and on the 7th, 14th, 21st day. Serum levels of total calcium (Ca) and phosphorus, activity of total alkaline phosphatase and its bone isoenzyme, tartrate-resistant acid phosphatase were determined. Measurements were performed with a spectrophotometer Stat Fax 4500. X-ray examinations were performed on an X-ray machine RUM-20 before the induction of osteoporosis and on the 7th, 14th, 21st day of the study. On the 14th day of the study, some areas of the spongy substance of the proximal femur have the appearance of a large-loop pattern due to the resorption of individual bone beams. There is also an expansion of the bone marrow canal due to bone resorption, thinning and emphasizing the edges of the cortical layer. On the 21st day, changes characteristic of osteoporosis were observed - low intensity of X-ray contrast shadow of bone, significant thinning of bone structure. Radiographically established changes in bone tissue correlate with biochemical parameters of rabbit blood. On the 21st day of osteoporosis induction in experimental animals, the level of total Ca decreased 2.1 times (p <0.001), and inorganic P increased 1.8 times (p <0.001), compared with normal and control animals. The level of total alkaline phosphatase and bone isoenzyme alkaline phosphatase on the 21st day of the study exceeded the performance of clinically healthy and control animals 1.1 times (p <0.001). The activity of tartrate-resistant acid phosphatase increased dynamically and on the 14th day was 30.7 ± 0.36 units / l, which is 1.1 times (p <0.001) higher than its level in clinically healthy animals, and 21st day - 1.2 times (p <0.001), respectively. The corticosteroid model of osteoporosis causes the manifestation of its radiological signs on the 14th day after induction, accompanied by hypocalcemia, hyperphosphatemia with a decrease in Ca:P and increased activity of alkaline and tartrate-resistant acid phosphatases. The complete pathochemical phase of osteoporosis occurs on the 21st day, which is manifested by a significant decrease in the ratio of phosphatases.

Key words: secondary osteoporosis, bone fractures, corticosteroids, dexamethasone, compact and spongy bone tissue, rabbits.

  1. Pustovit, R.V., Danyleiko Yu.M., Rublenko, M.V. (2006). Monitorynh khirurhichnoi patolohii sered dribnykh domashnikh tvaryn DLVM u Kyivskomu raioni m. Odesy za 2003–2005 roky [Monitoring of surgical pathology among small domestic animals DLVM in Kyiv district of Odessa for 2003-2005]. Visnyk Bilotserkiv. derzh. ahrar. un-tu. [Bulletin of Bila Tserkva State Agrarian University]. Bila Tserkva, Issue 36, pp. 132–137. (in Ukraine).
  2. Rublenko, M.V., Andriiets, V.H., Semeniak, S.A., Ulianchych, N.V. (2015). Vykorystannia kompozytnykh materialiv za perelomiv trubchastykh kistok u tvaryn [The use of composite materials for fractures of tubular bones in animals]. Bila Tserkva, 86 p. (in Ukraine).
  3. Teliatnikov, A.V. (2013). Poshyrennia perelomiv kistok u sobak [Prevalence of bone fractures in dogs]. Naukovyi visnyk veterynarnoi medytsyny: zb. nauk. prats. [Scientific Bulletin of Veterinary Medicine: collection of scientific papers]. Bila Tserkva, Issue 11 (101), pp. 149–153. (in Ukraine).
  4. Rublenko, S.V., Yeroshenko, O.V. (2012). Monitorynh veterynarnoi dopomohy i struktura khirurhichnoi patolohii sered dribnykh domashnikh tvaryn v umovakh miskoi kliniky [Monitoring of veterinary care and the structure of surgical pathology among small pets in the city clinic]. Visnyk Sumskoho NAU [Bulletin of the Sumy NAU]. Sumy, Issue 1 (30), pp. 150–154. (in Ukraine).
  5. Schachner, E., Lopez, M. (2015). Diagnosis, prevention, and management of canine hip dysplasia: a review. Vet Med (Auckl). pp. 181‒192. DOI:10.2147/ VMRR.S53266
  6. Kobayashi, K., Ryosuke, A. (2015). Spontaneous and bilateral necrosis of the femoral head in a young experimental beagle dog. Journal of toxicologic pathology. Vol. 28, 2, pp. 121–4. DOI:10.1293/ tox.2014-0060.
  7. Rychel, J.K. (2010). Diagnosis and treatment of osteoarthritis. Top Companion Anim Med. Vol. 25(1), pp. 20–5. DOI:10.1053/j.tcam.2009.10.005.
  8. Dmitrijev, V., Khomyn, N.M. (2017). Frequency of occurrence and peculiarities of bones fracture of the peripheral skeleton in dogs. Scientific Messenger LNUVMB. Vol. 19(82), pp. 180–183.
  9. Khomyn, N. M,. Mysak, A. R., Dmytriiev, V. S. (2015). Monitorynh perelomiv kistok u sobak [Monitoring of bone fractures in dogs]. Naukovyi visnyk LNUVMBT imeni S.Z. Gzhytskoho [Scientific Bulletin of Lviv National University of Veterinary Medicine and Biotechnology named after S.Z. Gzhytskogo]. Vol. 17, no. 2 (62), pp. 259–264. (in Ukraine).
  10. Sukhonos, V.P., Kyselov, I.H. (2013). Monitorynh travmatyzmu dribnykh domashnikh tvaryn v umovakh mista [Monitoring of injuries of small pets in the city]. Visnyk LNUVMBT im. S.Z. Gzhytskoho [Scientific Bulletin of Lviv National University of Veterinary Medicine and Biotechnology named after S.Z. Gzhytskogo]. Vol. 15, no. 3, pp. 329–332. (in Ukraine).
  11. Won, S., Chung, W.J., Yoon, J. (2017). Clinical application of quantitative computed tomography in osteogenesis imperfecta-suspected cat. J Vet Sci. Vol. 18(3), pp. 415–417. DOI:10.4142/jvs.18.3.415.
  12. Sartoris, D.J., Resnick, D. (1999). Dual-energy radiographic absorptiometry for bone densitometry: current status and perspective. AJR Am J Roentgenol. Vol. 152, pp. 241–246.
  13. Giannoudis, P., Tzioupis, C., Almalki, T., Buckley, R. (2007). Fracture healing in osteoporotic fractures: Is it really different?: A basic science perspective, Injury. Vol. 38, Issue 1, Suppl. pp. 90–99. ISSN 0020- 1383, DOI:10.1016/j.injury.2007.02.014.
  14. Kovalchuk, L.I. (2002). Problemy osteoporozu [Problems of osteoporosis]. Ternopil: Ukrmedknyga, 446 p. (in Ukraine).
  15. Wang, J.W., Li, W., Xu, S.W. (2005). Osteoporosis influences the middle and late periods of fracture healing in a rat osteoporotic model. Chin. J. Traumatol. no. 8, pp. 111‒116.
  16. Lelovas, P.P., Xanthos, T.T., Thoma, S.E., Lyritis, G.P., Dontas, I.A. (2008). The laboratory rat as an animal model for osteoporosis research. Comp Med. Vol. 58(5), pp. 424‒430.
  17. Turner, R.T. (1999). Mice, estrogen, and postmenopausal osteoporosis. J Bone Miner Res. Vol. 14, pp. 187–91.
  18. Bradley, A., Hasty, P., Davis, A., Ramirez-Solis, R. (1992). Modifying the mouse: design and desire. Biotechnology (N Y). Vol. 10, pp. 534–9.
  19. Oheim, R., Schinke, T., Amling M, Pogoda, P. (2016). Can we induce osteoporosis in animals comparable to the human situation? Injury. Jan. Vol. 47, Suppl. 1, pp. 3–9. DOI:10.1016/S0020-1383(16)30002-X.
  20. Egermann, M., Goldhahn, J., Schneider, E. (2005). Animal models for fracture treatment in osteoporosis. Osteoporos Int. Vol. 16, pp. 129–138. DOI:10.1007/s00198-005-1859-7.
  21. Cortet, B. (2011). Bone repair in osteoporotic bone: postmenopausal and cortisoneinduced osteoporosis. Osteoporos Int. Vol. 22, pp. 2007–10.
  22. Kalu, D.N. (1991). The ovariectomized rat model of postmenopausal bone loss. Bone Miner. Vol. 15, pp. 175–91.
  23. Kubo, T., Shiga, T., Hashimoto, J., Yoshioka, M., Honjo, H., Urabe, M., Kitajima, I., Semba, I., Hirasawa, Y. (1999). Osteoporosis influences the late period of fracture healing in a rat model prepared by ovariectomy and low calcium diet. J Steroid Biochem Mol Biol. Mar. Vol. 68(5–6), pp. 197–202. DOI:10.1016/ s0960-0760(99) 00032-1.
  24. Chavassieux, P. (1997). Short-term effects of corticosteroids on trabecular bone remodeling in old ewes. Bone. Vol. 20, no. 5, pp. 451‒455.
  25. Wood, C.L., Soucek, O., Wong, J., Zaman, F., Farquharson, C., Savendahl, L., Ahmed S.F. (2018). Animal models to explore the effects of glucocorticoids on skeletal growth and structure. Journal of Endocrinology. Vol. 236, pp. 69–91. DOI:10.1530/JOE-17-0361.
  26. Zhang, Z., Ren, H., Shen, G., Qiu, T., Liang, De., Yang, Z., Yao, Z., Tang, J., Jiang, X., Wei, Q. (2016). Animal models for glucocorticoid-induced postmenopausal osteoporosis: An updated review. Biomedicine & Pharmacotherapy. Vol. 84, pp. 438–446. ISSN 0753- 3322, DOI:10.1016/j.biopha.2016.09.045.
  27. Lill, C.A., Fluegel, A.K., Schneider, E. (2000). Sheep model for fracture treatment in osteoporotic bone: a pilot study about different induction regimens. J Orthop Trauma. Nov. Vol. 14(8), pp. 559–65; discussion 565–6. DOI:10.1097/ 00005131-200011000-00007.
  28. Słupski, W., Jawien, P., Nowak, B. (2021). Botanicals in Postmenopausal Osteoporosis. Nutrients. Vol. 13, 1609 p. DOI:10.3390/nu13051609.
  29. Egermann, M., Goldhahn, J., Holz, R., Schneider, E., Lill, C.A. (2008). A sheep model for fracture treatment in osteoporosis: Benefits of the model versus animal welfare. Laboratory Animals. Vol. 42(4), pp. 453–464. DOI:10.1258/ la.2007.007001.
  30. Dedukh, N., Batura, I. (2010). Strukturno-metabolichni osoblyvosti kistkovoi tkanyny ta reparatyvnyi osteohenez v umovakh eksperymentalnoho hliukokortykoidnoho osteoporozu (ohliad literatury) [Structural and metabolic features of bone tissue and reparative osteogenesis in experimental glucocorticoid osteoporosis (literature review)]. Orthopedics, traumatology and prosthetics. Issue 3, pp. 133–138. (in Ukraine). DOI:10.15674/0030-598720103133-138.
  31. Batura, I. A., Ashukina, N.A., Shapovalov, A. A. (2004). Reheneratsiia kistky pry eksperymentalno-indukovanomu porushenni balansu hliukokortykoidiv u bilykh laboratornykh krys [Bone regeneration in experimentally induced glucocorticoid imbalance in white laboratory rats]. Tavrych. medyko-biol. visnyk [Tavrich medico-biol. herald]. Vol. 7, no. 4, pp. 134–136. (in Ukraine).
  32. Flores-Reyes, M., Torres-García, E., Oros-Pantoja, R., Díaz-Sánchez, L.E., Mercado-Quintero, A.V., Medina-Velázquez, L.A. (2021). Femur absorptiometry changes determined by X-ray image segmentation in mice under experimental diabetes and ovariectomy. Appl Radiat Isot. 170 p. DOI:10.1016/j. apradiso.2021.10
AttachmentSize
PDF icon todosiuk_1_2022.pdf860.28 KB