You are here

X-ray and macromorphological evaluation of reparative osteogenesis by implantation of hydroxyapatite composite doped with germanium

Fragmentary fractures require not only the use of complex methods of osteosynthesis, but also the replacement of the defect site with implants to optimize reparative osteogenesis. A large number of osteosubstitute materials are used, including hydroxyapatite ceramics. To enhance its osteointegration properties, microelements with osteoinductive properties are added. The aim of the work is X-ray and macromorphological evaluation of the influence of hydroxyapatite ceramics doped with germanium on reparative osteogenesis in model fractures of the femur and radius in rabbits. Model defects were formed in the radial diaphysis and femur metaphysis in rabbits with a drill with a diameter of 3 mm and 4.2 mm, respectively. Anesthesia included acepromazine, thiopenate, and lidocaine infiltration anesthesia. In the experimental group (n=12) defects were replaced by granules of hydroxyapatite ceramics doped with germanium, and in the control group (n=12) – undoped. The use of hydroxyapatite ceramics doped with germanium is accompanied by a moderate course of the inflammatory-resorptive phase of reparative osteogenesis. At the same time on the radiographs of animals of the experimental group on the 14th day the periosteal reaction is moderate, and on the 30th day it is barely noticeable with increased radiological density. In control animals after trauma to the compact bone proximal and distal to its location showed a thickened and compacted periosteum with a contrasting composite material. On the 60th day in the cancellous bone of experimental animals, the area of injury acquired an X-ray density close to normal, in the control – it remained elevated. Hydroxyapatin composite doped with germanium acquires osteoinductive properties and may be promising for the replacement of bone defects and correction of reparative osteogenesis in animals. Key words: bioceramics, germanium, bone fractures, compact and spongy bone tissue, rabbits.

  1. Rublenko, S.V., Yeroshenko, O.V. (2012). Monitoring veterinarnoyi dopomogi i struktura hirurgichnoyi patologiyi sered dribnih domashnih tvarin v umovah miskoyi kliniki [Monitoring of veterinary care and the structure of surgical pathology among small pets in a city clinic]. Visnik Sumskogo NAU [Bulletin of Sumy National Agrarian University]. Sumy, Issue 1 (30), pp. 150–154.
  2. Rublenko, M.V., Andriyec, V.G., Semenyak, S.A., Ulyanchich, N.V. (2015). Vikoristannya kompozitnih materialiv za perelomiv trubchastih kistok u tvarin [The use of composite materials for tubular bone fractures in animals]. Bila Tserkva, 86 p.
  3. Pustovit, R.V. Danilejko, Yu.M., Rublenko, M.V. (2006). Monitoring hirurgichnoyi patologiyi sered dribnih domashnih tvarin DLVM u Kiyivskomu rajoni m. Odesi za 2003–2005 roki [Monitoring of surgical pathology among small domestic animals DLVM in Kyiv district of Odessa for 2003–2005]. Visnik Bilocerkiv. derzh. agrar. un-tu [Bulletin of Bila Tserkva State Agrarian University]. Bila Tserkva, Issue 36, pp. 132–137.
  4. Homin, N. M., Misak, A. R., Dmitriyev, V. S. (2015). Monitoring perelomiv kistok u sobak [Monitoring of bone fractures in dogs]. Naukovij visnik LNUVMBT imeni S.Z. Gzhickogo [Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Lviv]. Vol. 17, no. 2 (62), pp. 259 – 264
  5. Bosch, T., Pohlemann, T., Hass, N. (1992). Klassifikation und Management des komplexen Beckentraumans. Umfallechirurg. Vol. 95, pp. 189–196.
  6. Rublenko, M.V., Chemerovskij, V.O., Vlasenko, V.M., Ulyanchich, N.V. (2018). Ocinka osteointegracijnih i osteoinduktivnih vlastivostej keramiki, legovanoyi kremniyem, za modelnih perelomiv stegnovoyi kistki u kroliv [Evaluation of osteointegration and osteoinductive properties of silicon-doped ceramics in model fractures of the femur in rabbits]. Naukovij visnik veterinarnoyi medicini [Scientific Bulletin of Veterinary Medicine]. no. 2, pp. 44–53. Available at: https://doi.org/ 10.33245/2310- 4902-2018-144-2-44-53
  7. Telyatnikov, A.V. (2013). Poshirennya perelomiv kistok u sobak [Prevalence of bone fractures in dogs]. Naukovij visnik veterinarnoyi medicini: zb. nauk. prac. [Scientific Bulletin of Veterinary Medicine: a collection of scientific papers]. Bila Tserkva, Issue 11 (101), pp. 149–153.
  8. Telyatnikov, A.V. (2017). Zastosuvannja nanochastok Mg, Fe, Co, Su, Zn, Ag za perelomiv kistok ta i'h uskladnen' u sobak: avtoref. dys.. … do-ra vet. nauk. 16.00.05. [The use of nanoparticles Mg, Fe, Co, Cu, Zn, Ag for bone fractures and their complications in dogs: abstract of the dissertation of the doctor of veterinary sciences16.00.05.]. Bila Cerkva: Bilocerkivs'kyj NAU. 35 p.
  9. Haaland, P.J., Sjostrom, L., Devor, M. (2009). Appendicular fracture repair in dogs using the locking compression plate system: 47 cases. Vet. Comp. Orthop Traumatol. Vol. 4, pp. 309–315. Available at: https://doi. org/10.3415/VCOT08-05-0044.
  10. Kirichek, S.I. (2002). Travmatologiya i ortopediya [Traumatology and Orthopedics]. Minsk: BSMU, 131 p. (140 T).
  11. Uzurbaev, R.M., Silanteva, T.A., Gorbach, E.N., Bychkov, V.G., Yuzhanova, V.A. (2017). Regenerativnye svojstva tkanej i organov, faktory uskoreniya reparativnyh procesov [Regenerative properties of tissues and organs, factors of acceleration of reparative processes]. Medicinskaya nauka i obrazovanie Urala [Medical science and education of the Urals]. no. 9, pp. 171–178.
  12. Chemerovskij, V.O. (2020). Rentgenografichna, makromorfologichna i gematologichna ocinka gidroksiapatitnoyi keramiki z riznimi fiziko-himichnimi vlastivostyami [X-ray, macromorphological and hematological assessment of hydroxyapatite ceramics with different physical and chemical authorities]. Naukovij visnik veterinarnoyi medicini [Scientific Bulletin of Veterinary Medicine]. no. 1, pp. 140–152. Available at: https://doi. org/10.33245/2310-4902-2020-154-1-140-152
  13. Keating, J. (2001). Substitutes for autologous bone graft in orthopaedic trauma. J Bone Joint Surg Br. Vol. 83-B, pp. 3–8.
  14. Podaropoulos, L., Veis, A.A., Papadimitriou, S., Alexandridis, C., Oral. (2009). Bone regeneration using b-tricalcium phosphate in a calcium sulfate matrix. Implantol. Vol. 35, pp. 28–36.
  15. Oryan, A., Alidadi, S., Moshiri, A., Maffulli, N. (2014). Bone regenerative medicine: classic options, novel strategies, and future directions. J. Orthop Surg Res. Vol. 9. (1), pp. 29–36.
  16. Korenkov, O. V. (2012). Vikoristannya biogennih ta bioinertnih materialiv u kistkovo-plastichnij hirurgiyi (oglyad literaturi) [Victory of biogenic and bioinertial materials in the case of cysto-plastic surgery (look around the literature)]. Ortopediya, travmatologiya i protezirovanie [Orthopedics, traumatology and prosthetics]. no. 4, pp. 120–128.
  17. Zagorodko, O.V., Antonyuk, N.G., Burban, A.F. (2008). Zagalna harakteristika osnovnih osteozamishuvalnih implantativ dlya kistkovoyi plastiki [General characteristics of the main osteosubstitution implants for bone grafting]. Magisterium. Issue 33, pp. 29–35.
  18. Korenkov, O.V. (2014). Optimizaciya reparativnogo osteogenezu za dopomogoyu kalcij-fosfatnih osteoplastichnih materialiv (oglyad literaturi) [Optimization of reparative osteogenesis using calcium phosphate osteoplastic materials (literature review)]. Ortopediya, travmatologiya i protezirovanie [Orthopedics, traumatology and prosthetics]. no. 1, pp. 110–116.
  19. Cheng, L.J., Yu, T., Shi, Z. (2017). Osteoinduction Mechanism of Calcium Phosphate Biomaterials In Vivo: A Review. Journal of biomaterials and tissue engineering. Vol. 7, pp. 911–918.
  20. Chim, H. (2009). Biomaterials in craniofacial surgery: experimental studies and clinical application. Craniofac. Surg. Vol. 20 (1), pp. 29–33.
  21. Lingjun, Li., Tao, Ruan., Yingnan, Lyu., Bangyuan, Wu. (2017). Advancesin Effect of Germanium or Germanium Compoundson Animals. Journalof Biosciences and Medicines. 5, pp. 56–73. Available at: https://doi.org/10.4236/ jbm.2017.57006
  22. Bian, D., Zhou, W., Den, J., Li Y. (2017). Development of magnesium-based biodegradable metals with dietary trace element germanium as orthopaedic implant applications. Acta Biomaterialia. Vol. 64, pp. 421–436. Available at: https://doi. org/10.1016/j.actbio.2017.10.004.
  23. Menchikov, L.G., Ignatenko, M.A. (2012). Biologicheskaya aktivnost organicheskih soedinenij germaniya (obzor) [Biological activity of organic compounds of germanium (review)]. Himiko-farmacevticheskij zhurnal [Pharmaceutical Chemistry Journal]. Vol. 46, no. 11, pp. 3–6.
  24. Fujii, A., Kuboyama, N., Yamane, J., Nakao, S., Furukawa, Y. (1993). Effect of organic germanium compound (Ge-132) on experimental osteoporosis in rats. General Pharmacology: The Vascular System. 24(6), pp. 1527–1532. Available at: https://doi.org/10.1007/s10653-017-0061-0
  25. Hrabko, M., Fedoruk, R., Dolajchuk, O. (2016). Fiziologo-biohimichni procesi v organizmi samic F0 i samciv F1 shuriv za umov vipoyuvannya yim «nanogermaniyu» citratu i citratu germaniyu himichno sintezovanogo [Physiological and biochemical processes in the body of female F0 and male F1 rats under the conditions of feeding them "nanogermanium" citrate and chemically synthesized germanium citrate]. Visnik Lvivskogo universitetu [Bulletin of Lviv University]. Seriya biologichna [The series is biological]. Issue 73, pp. 226–234.
  26. Lukevic, Ya. E., Gar, T.K., Ignatovich, L.M., Mironov, V.F. (1990). Biologicheskaya aktivnost soedinenij germaniya [Biological activity of germanium compounds]. Riga: Knowledge, 191 p.
  27. Bumejster, V. I., Pogorelov, M. V. (2008). Suchasnij poglyad na reparativnij osteogenez [Modern view on reparative osteogenesis]. Svit medicini ta biologiyi [The world of medicine and biology]. 4, pp. 104–110.
  28. Rublenko, M.V., Dudka, V.B., Semenyak, S.A. (2015). Morfo-rentgenologichna i biohimichna harakteristika reparativnogo osteogenezu za zamishennya kistkovih defektiv Biominom-GT u tvarin [Morpho-radiological and biochemical characteristics of reparative osteogenesis with replacement of bone defects by Biomin-HT in animals]. Nauk. visnik vet. medicini: zb. nauk. prac. [Scientific Bulletin of Veterinary Medicine: a collection of scientific papers]. Bila Tserkva, no. 1 (118), pp. 98–106.
  29. Rublenko, M.V., Semenyak, S.A., Povoroznyuk, V.V. (2015). Biohimicheskie markery kostnogo metabolizma u sobak s perelomami trubchatyh kostej i zameshenie kostnyh defektov «Biominom-GT» [Biochemical markers of bone metabolism in dogs with fractures of the tubular bones and replacement of bone defects "Biomin-GT"]. Uchyonye Zapiski UO VGAVM [Scientists Notes UO VGAVM]. Vitebsk, Vol. 51, Issue 1, Part 1, pp. 129–131.
  30. O’Neill, E., Awale, G., Daneshm, L., Umerah, O. (2018). The roles of ions on bone regeneration. Drug discovery today. Vol. 23 (4), pp. 879–890.
AttachmentSize
PDF icon todosyuk_2_2020.pdf1.11 MB