You are here
Cyto-, fi broarchitectonics and vascularization of the external (red) zone of the coypu’s meniscus
Meniscus injuries are recognized as the cause of significant morbidity of the musculoskeletal system. Features of the structural organization of the various meniscus zones are a necessaryfor understanding pathologies associated with the knee joint. This will expand and deepen micromorphological knowledge and practically apply during the choice of treatment tactics for meniscus preservation, suturing during reconstructive meniscus repair, reduce the risk of vascular injuries, and make it possible to use tissue engineering for meniscus regeneration. Indeed, today it is known that only the preservation of menisci or a slight ectomy of the inner zone, which cannot be restored with signifi cant injury, can preserve the health and biomechanics of the knee joint. The aim of our work was to determine the characteristics of the cyto- and fi bromorphological characteristics, as well as the degree of vascularization of the external (red) zone of the lateral and medial menisci of the knee joint in foot-moving coypus. A complex of histological and neurohistological research methods was used in the work. The patented neurohistological method of impregnation is performed in its own algorithm. The selection of animals was carried out according to the type of specialization of the limb to the substrate. As a result of histological examination, it was found that cyto-fi broarchitectonics of the external (red) zone of the latera l and medial menisci of the coypus has general biological signs, and species-specifi city is characteristic of vascularization. The external (red) zone of the coypu’s meniscus is similar in st ructure to the dense, formed connective tissue. Cytoarchitectonics is represented by of the fi broblastic typecells: fi brocytes, fi broblasts and undiff erentiated stem cells, which are localized between collagen fi bers individually, in pairs, in a chain or in short rows. Fibroarchitectonics – tightly packed bundles of collagen fi bers with a pronounced parallel orientation. The medial meniscus has saturated zones of intraorgan vascular nutrition due to dilated, anastomosing capillary branches formed by perforations with perimeniscal broad-loop microcirculation nets that occupy large areas and form vascular fi elds, as well as numerous vascular glomeruli. In the lateral meniscus, the vascularization zone is characterized by limited capillary branches, interval and small penetration by capillaries of the meniscus red zone, and limited, localized perimeniscal nets.
Key words: fi brocytes, fi broblasts, collagen fi bers, vascularization, vascular glomeruli, external zone, red zone, meniscus, knee joint, coypu.
- Makris, E.A. (2011). The knee meniscus: Structure function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials. 32, pp. 7411–7431. Available at:https://doi.org/10.1016/j.biomaterials.2011.06.037
- Pukaluk, А., Ryniewicz, А.М. (2016). Regeneration of knee joint menisci – methods review. Bio-Algorithms and Med-Systems. Vol. 12, Issue 2. Available at: https://doi. org/10.1515/bams-2016-0002
- Bernstein, J. (2010). Clin OrthopRelat Res. Vol. 468 (4), pp. 1190–1192. Available at:https://doi.org/10.1007/ s11999-010-1253-4
- Hellio, Le Graverand M.P., Ou, Y., Schield-Yee, T., Barclay, L., Hart, D., Natsume, T. (2001). The cells of the rabbit meniscus: their arrangement, interrelationship, morphological variations and cytoarchitecture. J Anat. Vol. 198, pp. 525–535. Available at:https://doi.org/10.1046/j.14697580.2000.19850525.x
- Newman, A.P., Anderson, D.R., Daniels, A.U., Dales, M.C. (1989). Mechanics of the healed meniscus in a canine model. Am J Sports Med. Vol. 17, pp. 164–175. Available at:https:// doi.org/10.1177/036354658901700205
- Radin, E.L., de Lamotte, F., Maquet, P. (1984). Role of the menisci in the distribution of stress in the knee. Clin Orthop Relat Res. Vol. 185, pp. 290–294. PMID: 6546709
- Moriguchi, Y., Tateishi, K., Ando, W., Shimomura, K., Yonetani, Y., Tanaka, Y., Kita, K., Hart, D.A., Gobbi, A., Shino, K., Yoshikawa, H., Nakamura, N. (2013). Repair of meniscal lesions using a scaff old-free tissue-engineered construct derived from allogenic synovial MSCs in a miniature swine model. Biomaterials. Vol. 34, pp. 2185–2193. Available at:https://doi.org/10.1016/j.biomaterials.2012.11.039
- Kim, S., Bosque, J., Meehan, J.P., Jamali, A., Marder, R. (2011). Increase in outpatient knee arthroscopy in the United States: a comparison of National Surveys of Ambulatory Surgery, 1996 and 2006. J Bone Joint Surg Am. Vol. 93, pp. 994–1000. Available at:https://doi.org/10.2106/JBJS.I.01618.
- Ratzlaff , C.R., Liang, M.H. (2010). New developments in osteoarthritis. Prevention of injury-related knee osteoarthritis: opportunities for the primary and secondary prevention of knee osteoarthritis. Arthritis Res Ther. Vol. 12(4), 215 p. Available at:https://doi.org/10.1186/ar3113
- Kraus, V.B., Feng, S., Wang, S.C., White, S., Ainslie, M., Brett, A., Holmes, A., Charles, H.C. (2009). Trabecular morphometry by fractal signature analysis is a novel marker of osteoarthritis progression. Arthritis Rheum. Vol. 60, pp. 3711–3722. Available at: https://doi.org/10.1002/art.37970
- Wolski, M., Podsiadlo, P., Stachowiak, G.W., Lohmander, L.S., Englund, M. (2010). Diff erences in trabecular bone texture between knees with and without radiographic osteoarthritis detected by directional fractal signature method. Osteoarthr. Cartil. Vol. 18, pp. 684–690. Available at: https://doi.org/10.1016/j.joca.2010.01.002
- Fellows, C.R., Matta, C., Zakany, R., Khan, I.M., Mobasheri, A. (2016). Adipose, bone marrow and synovial joint-derived mesenchymal stem cells for cartilage repair, Front. Genet. Vol. 7, 213 p. Available at: https://doi. org/10.3389/fgene.2016.00213.
- De Albornoz, P.M., Forriol, F. (2012). The meniscal healing process. Muscles Ligaments Tendons J. Vol. 2, pp. 10–18. PMID: 23738268
- Cengiz, I.F., Pereira, H., Pego, J.M., Sousa, N., Espregueira-Mendes, J., Oliveira, J.M., Reis, R.L. (2015). Segmental and regional quantifi cation of 3D cellular density of human meniscus from osteoarthritic knee. J Tissue Eng Regen Med. Vol. 11(6), pp. 1844–1852. Available at: https://doi. org/10.1002/term.2082
- Seil, R., Becker, R. (2016). Time for a paradigm change in meniscal repair: Save the meniscus! Knee Surgery, Sport. Traumatol. Arthrosc. Vol. 24, pp. 1421–1423. Available at: https://doi.org/10.1007/s00167-016-4127-9
- Jacob, G., Shimomura, K., Krych, A.J., Nakamura, N. (2020). The Meniscus Tear: A Review of Stem Cell Therapies / Cells. Vol. 9(1). 92 p. Available at: https://doi. org/10.3390/cells9010092
- Kurzweil, P.R. Inside-Out and Outside-in Meniscus Repair. Available at: https://musculoskeletalkey.com/insideout-and-outside-in-meniscus-repair/
- Sposib imprehnatsiyi nitratom sribla zamorozhenykh istorizriziv dlya vyhotovlennya peryferiynoyi nervovoyi systemy: pat. № 135108 Ukrayina: G01N 33/15 (2006.01) № u 2019 01025 2019; zayavl. 31.01.2019; opubl. 10.06.2019. [Method of silver nitrate impregnation of frozen histosections to detect structures of peripheral nervous system: US Pat. № 135108 Ukraine: G01N 33/15 (2006.01) 201u201901025 2019; declared 31/01/2019; publ. 06/10/2019].
- Pro zakhyst tvaryn vid zhorstokoho povodzhennya: Zakon Ukrayiny Vidomosti Verkhovnoyi Rady Ukrayiny [On protection of animals from cruel treatment: Law of Ukraine Information of the Verkhovna Rada of Ukraine]. 2006. № 27, 230 p.
- Poulsen, M., Johnson, D. (2011). Meniscal injuries in the young, athletically active patient. The Physician and sportmedicine. Vol. 39(1), pp. 123–130. Available at:https:// doi.org/10.3810/psm.2011.02.1870
- Arnoczky, S.P., Warren, R.F. (1982). Microvasculature of the human meniscus. Am. J. Sports Med. Vol. 10, pp. 90–95. Available at:https://doi.org/10.1177/036354658201000205
- Forriol, F. (2009). Growth factors in cartilage and meniscus repair. Injury. Vol. 40, pp. 12–16. Available at:https:// doi.org/10.1016/S0020-1383(09)70005-1
- Benjamin, M., Evans, E.J. (1990). Fibrocartilage. Anat. Vol. 171, pp. 1–15. PMCID: PMC1257123
- Gabrion, A., Aimedieu, P., Laya, Z., Havet, E., Mertl, P., Grebe, R., Laude, M. (2005). Relationship between ultrastructure and biomechanical properties of the knee meniscus. Surg Radiol Anat. Vol. 27(6), pp. 507–510. Available at:https://doi.org/10.1007/s00276-005-0031-6
- Nakata, K., Shino, K., Hamada, M., Mae, T., Miyama, T., Shinjo, H. (2001). Human meniscus cell: characterization of the primary culture and use for tissue engineering. Clin OrthopRelat Res. Vol. 391, pp. 208–218. PMID: 11603705
- Verdon, P.C., Forsyth, R.G., Wang, J. (2005). Characterisation of human knee meniscus cell phenotype. Osteoarthritis Cartilage. Vol. 13, pp. 548–560. Available at: https:// doi.org/10.1016/j.joca.2005.01.010
- Van der Bracht, H., Verdonk, R., Verbruggen, G., Elewaut, D., Verdonk, P. (2007). Cell based meniscus tissue engineering. In: Ashammakhi N, Reis R, Chiellini E, editors. Topics in tissue engineering. Vol. 3.
- Sanchez-Adam, J., Athanasiou, K.A. 2012. Biomechanics of meniscus cells: regional variation and comparison to articular chondrocytes and ligament cells. Biomech Model Mechanobiol. Vol. 11(7), pp. 1047–1056. Available at:https:// doi.org/10.1007/s10237-012-0372-0.
- Cengiz, I.F., Pereira, H., Pego, J.M,. Sousa, N., Espregueira-Mende, J., Oliveira, J.M., Reis, R.L. Segmental and regional quantifi cation of 3D cellular density of human meniscus from osteoarthritic knee. J Tissue Eng Regen Med. Vol. 11(6), pp. 1844–1852. Available at:https://doi.org/10.1002/ term.2082
- Johannah, S.A., Kyriacos, A.A. (2012). Biomechanics of Meniscus Cells: Regional Variation and Comparison to Articular Chondrocytes and Ligament Cells. Biomech Model Mechanobiol. Vol. 11(7), pp. 1047–1056. Available at:https:// doi.org/10.1007/s10237-012-0372-0
- Rattner, J.B., Matyas, J.R., Barclay, L., Holowaychuk, S., Sciore, P., Lo, I.K., Shrive, N.G., Frank, C.B., Achari, Y., Hart, D.A. (2011). New understanding of the complex structure of knee menisci: implications for injury risk and repair potential for athletes. Scand J Med Sci Sports. Vol. 21(4), pp. 543–553. Available at:https://doi.org/10.1111/j.16000838.2009.01073.x
- Andrews, S.H., Ronsky, J.L., Rattner, J.B., Shrive, N.G., Jamniczky, H.A. (2013). An evaluation of meniscal collagenous structure using optical projection tomography. BMC Med Imaging. Vol. 23, pp. 13–21. Available at:https:// doi.org/ 10.1186/1471-2342-13-21.
- Harner, C.D., Janaushek, M.A., Kanamori, A,. Yagi, M., Vogrin, T.M., Woo, S.L. (2000). Biomechanical analysis of a double-bundle posterior cruciate ligament reconstruction. Am J Sports Med. Vol. 28(2), pp. 144–151. Available at:https://doi.org/10.1177/03635465000280020201
- Foad, A. (2012). Self-limited healing of a radial tear of the lateral meniscus. Knee Surg Sports TraumatolArthrosc. Vol. 20, pp. 933–936. Available at:https://doi.org/10.1007/ s00167-011-1660-4.
- 35. Yu, H., Adesida, A.B., Jomha, N.M. (2015). Meniscus repair using mesenchymal stem cells - a comprehensive review Stem Cell Res. Ther. Vol. 6, 86 p. Available at:https:// doi.org/10.1186/s13287-015-0077-2
- Driscoll, M.D., Robin, B.N., Horie, M., Hubert, Z.T., Sampson, H.W., Jupiter, D.C., Tharakan, B., Reeve, R.E. (2013). Marrow stimulation improves meniscal healing at early endpoints in a rabbit meniscal injury model. Arthroscopy. Vol. 29, pp. 113–121. Available at:https://doi. org/10.1016/j.arthro.2012.06.023
- Dutton, A.Q., Choong, P.F., Goh, J.C., Lee, E.H., Hui, J.H. (2010). Enhancement of meniscal repair in the avascular zone using mesenchymal stem cells in a porcine model. J Bone Joint Surg Br. Vol. 92, pp.169–175. Available at:https://doi.org/10.1302/0301-620X.92B1.22629
- Matsukura, Y., Muneta, T., Tsuji, K., Koga, H., Sekiya, I. (2014). Mesenchymal stem cells in synovial fl uid increase after meniscus injury. Clin. Orthop. Relat. Res. Vol. 472, pp. 1357–1364. Available at:https://doi.org/10.1007/ s11999-013-3418-4
Attachment | Size |
---|---|
novak_1_2020.pdf | 4.22 MB |