You are here

Molecular and biological mechanisms of reparative osteogenesis

Fracture consolidation is a complex of biological process that passes through a series of successive stages and ends by a bone formation in the zone of fractures. At this time, various researchers distinguish between three to five stages (phases) of fractures consolidation. Reparative osteogenesis depends on the general factors (age, sex, hypovitaminosis, anemia, etc.) and local factors (disturbances of blood circulation at the place of fracture, the stability of fixation of bone fragments and presence of bone defects) and has a complex regulation. Consolidation of bone fractures occurs by primary or secondary repair. The regulation of reparative osteogenesis occurs at the systemic and local levels. Biological substances that are involved in local regulation of bone repair are divided into three groups: proinflammatory cytokines, growth factors and angiogenic factors.

Previously we have established the prolonged increasing of proinflammatory cytokines in the blood at intramedular osteosynthesis in dogs. It began from the first day after surgery and taking of peak on the 10th day – for TNF-α, and taking of peak on the 30th day – for IL-1β. At the same time, the maximum concentration of anti-inflammatory cytokine, IL-10, was observed only at the 30th day, that indicated an imbalance of antagonistic cytokine systems at the stage of osteoinduction in case of classical intramedullary osteosynthesis methodology. In turn, uncontrolled cytokine reaction causes endothelial dysfunction and leads to hyperactivation primary and secondary hemostasis, which can complicate of reparative osteogenesis. In this case, the most powerful osteoinductors are bone morphogenetic proteins (BMP) that stimulate a mesenchymal stem cells differentiation into osteoblasts. Thus, in mice with inactivated mutation of BMP-2 bone callus are not formed.

Angiogenic factors play a leading role in vascularization of bone callus/ This process regulated by angiopoietins and vascular endothelial growth factor (VEGF). Angiopoietin, especially 1 and 2, is a vascular morphogenetic protein, their expression induces vessel grows in the callus from the vessels of the periosteum.

Mesenchymal stem cells (MSCs) play an important role in the process of reparative osteogenesis. They fall into the area of trauma from the bone marrow and systemic circulation and differentiate thru chondrogenicor osteogenic ways. The first cellular elements that are detected at the site of the injury are neutrophils. They secrete a numerous of cytokines that regulate the inflammation, proliferation and cell differentiation. This process regulates by IL-1, IL-6, TNF-α which secreted by macrophages and inflammatory cells and stimulates a chemotaxis.

Subsequently, the blood cells are degrade making new fibrin-rich tissue in a hematoma, which converts into a soft callus.On animals models (rabbits, rats) the peak of callus formation occurred on 7-9 days. During this period, a bone cuff begins to form around the broken bone and performs stabilization of the fracture zone.This is due regarding cells proliferation of the bone cambial layer of bone marrow, osteogenic cells of the periosteum, osteons, and endosteum.

A new bone tissue formation depends on number of mesenchymal stem cells. In this case, the transforming growth factor (TGF-β) and the members of this superfamily β2, -β3, and GDF-5 plays an important role and regulate chondrogenesis and endochondral ossification.

The third stage of reparative osteogenesis regulated by macrophage colony-stimulating factor (M-CSF), TNF-α, RANKL and ORG, which initiate resorption of mineralized cartilage. At the same time, they stimulate the activity of bone cells, accelerating the formation of bone tissue. The process of remodeling is accompanied by a decrease in the activity of growth factors – TGF-b1 -b3, GDF-10 and most of bone morphogenetic proteins. In this case, there is an increase in the activity of IL-1, TNF-α, and BMP-2, which locally regulate reparative osteogenesis during this period.

However, only recently, the specific biochemical markers of bone metabolism: alkaline phosphatase and its bone isoenzymes, osteocalcin, c-terminal telopeptide of type I collagen, tartrate-resistant acid phosphatase have been proposed for evaluation of bone tissue metabolism. We conducted the initial comprehensive assessment of specific biochemical markers in the dynamics of the use of hydroxyapatite materials in case of bone defects replacing in dogs.

Key words: reparative osteogenesis, bone regeneration, fracture healing, regulation of osteogenesis, animals.

1. Einhorn, T.A. (1995). Enhancement of fracture healing. J. Bone Joint Surg, Vol. 77–A, pp. 940-956.

2. Iryanov, Yu.M.,Silanteva, T.A. (2007). Sovremennye predstavleniya o gistologicheskikh aspektakh reparativnoy regeneratsii kostnoy tkani. Kletochnye istochniki reparativnogo osteogeneza. Geterogennost kletochnoy populyatsii v oblasti travmaticheskogo povrezhdeniya kosti. [Modern ideas about the histological aspects of reparative bone tissue regeneration. Cell sources of reparative osteogenesis. Heterogeneity of the cell population in the field of traumatic bone injury] Geniy ortopedii, № 2, pp. 111-116.

3. Umarov, F.Kh. (2010). Regeneratsiya kosti i krovosnabzhenie [Regeneration of bone and blood supply].Ukrainskiy medichniy almanakh [Ukrainian medical almanac], Vol. 13, № 1, pp. 199-203.

4. Brusko, A.T., Gayko, G.V. (2014). Sovremennye predstavleniya o stadiyakh reparativnoy regeneratsii kostnoy tkani pri perelomakh. [Modern ideas about the stages of reparative bone regeneration in fractures]. Vіsnik ortopedіi, travmatologіi ta protezuvannya [Bulletin of orthopedics, traumatology and prosthetics], №2, pp. 5-8.

5. Bumeyster, V.І. Pogorelov, M.V. (2008). Suchasniy poglyad na reparativniy osteogenez [A modern look at reparative osteogenesis]. Svіt meditsini ta bіologії [World of Medicine and Biology], № 4, pp. 104-110.

6. Stürmer, K.M. (1996). Pathophysiology of disrupted bone healing. Orthopade, Vol.25, №5, pp. 386-393.

7. Marsell, R.,Einhorn, T.A. (2011). The biology of fracture healing. Injury, Vol. 42 (6), pp. 551-555.

8. Pustovіt, R.V.,Rublenko, M.V. (2004). Metabolіzm fіbrinogenu  pri perelomakh trubchastikh kіstok u sobak [Metabolism of fibrinogen in fractures of tubular bones in dogs]. Materіali konferentsіi veterinarnikh khіrurgіv Ukraini [Materials of the conference of veterinary surgeons of Ukraine], pp. 50-52.

9. Rublenko, M.V. Shaganenko, V.S. (2011). Patogenetichna rol oksidu azotu v umovakh zapalno-reparativnogo protsesu pri perelomakh trubchastikh kіstok u sobak ta yogo korektsіya Іmunom-depo [Pathogenetic role of nitric oxide in conditions of inflammatory-reparative process in fractures of tubular bones in dogs and its correction by Immune-depot]. Bіologіya tvarin, Vol. 13, № 1-2, pp. 340-346.

10. Rublenko, M.V.,Yeroshenko, O.V. (2011). Reaktsіya gostroi fazi u sobak іz perelomami stegnovoi kіstki [Acute phase reaction in dogs with fractures of the femur]. Naukoviy vіsnik vet.meditsini: zb.nauk.prats, Vol. 8(87), pp. 138-143.

11. Dimitriou, R.,Tsiridis, E., Giannoudis, P.V. (2005). Current concepts of molecular aspects of bone healing. Injury, Int. J. Care Injured, Vol. 36, pp. 1392-1404.

12. Rahn, B.A. (2002). Bone healing: histologic and physiologic concepts. Bone in clinical orthopedics, pp. 287-326.

13. Lee, S.K.,Lorenzo, J. (2006). Cytokines regulating osteoclast formation and function.Current Opinion in Rheumatology, Vol. 18(4), pp. 411-418.

14. Andrіiets, V.(2014). Klіnіko-rentgenologіchna kharakteristika ta tsitokіnova regulyatsіya reparativnogo osteogenezu u vipadku іntramedulyarnogo osteosintezu kіstok u sobak [Clinical and X-ray characteristics and cytokine regulation of reparative osteogenesis in the case of intramedullary osteosynthesis of bones in dogs]. Nauk. vіsnik LNUVMBT іm. S.Z. Gzhitskogo, Vol. 16, №3 (60), Ch.1, pp. 27-37.

15. Pustovіt, R.V., Rublenko, M.V. (2007). Stan koagulyatsіynogo gemostazu ta fіbrinolіzu zalezhno vіd nozologіchnoi formi patologіi kіstok [The state of coagulation hemostasis and fibrinolysis depending on the nosological form of bone pathology]. Sіlskiy gospodar, № 11–12, pp. 17-21.

16. Andrіiets, V., Rublenko, N. (2012). Sudinno-trombotsitarniy gemostaz u sobak z patologієyu kіstok [Vascular thrombocytopenic hemostasis in dogs with bone pathology]. Vіsnik Zhitomirskogo NAYeU, №1 (32), Vol. 3, Ch.2, pp. 3-8.

17. Tsuji K. Bandyopadhyay, A., Harfe, B.D. et al. (2006). BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nature Genetics, Vol. 38(12), pp. 1424-1429.

18. Marsell, R.,Einhorn, T.A. (2009). The role of endogenous bone morphogenetic proteins in normal skeletal repair. Injury, Vol. 40(3), pp. 4-7.

19. Kanczler, J.M., Oreffo, R.O. (2008). Osteogenesis and angiogenesis: the potential for engineering bone. European Cells &Materials, Vol. 15, pp. 100–114.

20. Ai-Aql, Z.S., Alagl, A.S., Graves, D.T. et al. (2008). Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. Journal of Dental Research, Vol. 87(2), pp. 107-118.

21. Keramaris, N.C., Calori, V.S., Nikolaou et al. (2008). Fracture vascularity and bone healing: a systematic review of the role of VEGF. Injury,Vol. 39(2), pp. 45-57.

22. Tsuji, K.A., Bandyopadhyay, B.D., Harfe, et al. (2006). BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nature Genetics, Vol. 38(12), pp. 1424-1429.

23. Granero-Molto, F. J.A., Weis, M.I., Miga, et al. (2009). Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells, Vol. 27(8), pp. 1887-1898.

24. Kitaori, T. Ito H, Schwarz, E.M. et al. (2009). Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis & Rheumatism, Vol. 60(3), pp. 813-823.

25. Lieberman, J.R.,Friedlander, G.E. (2005). Bone regeneration and repair: biology and clinical applications. New Jersey, Humana Press Inc, 398 p.

26. Bastian, O., Pillay, J., Alblas, J. (2011). Systemic inflammation and fracture healing.J. of Leukocyte Biology, Vol. 89,
pp. 669-673.

27. Popsuyshapka, O.K., Lіtvіshko, V.O., Ashukіna, N.O. (2015). Klіnіko-morfologіchnі stadіi protsesu zroshchennya vіdlamkіv kіstki [Clinical and morphological stages of the process of brushing bone fragments]. Ortopedіya, travmatologіya і protezuvannya [Orthopedics, traumatology and prosthetics], № 1, pp. 12-19.

28. Street, J., Winter, D., Wang, J.H. et al. (2000). Is human fracture hematoma inherently angiogenic. Clin. Orthop. Rel Res, Vol. 378, pp. 224-237.

29. Gerstenfeld, L.C., Cullinane, D.M., Barnes, G.L. et al. (2003). Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J. of Cellular Biochemistry, Vol. 88(5), pp. 873-884.

30. Granero-Moltó, F.,Weis, J.A., Miga, M.I. et al. (2009). Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells, Vol. 27(8), pp. 1887-1898.

31. Kon, T.,Cho, T.J. Aizawa, T. et al. (2001). Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J. of Bone & Mineral Research,
Vol. 16(6), pp. 1004-1014.

32. Korzh, N.A., Dedukh, M.V. (2006). Reparativnaya regeneratsiya kosti: sovremennyy vzglyad na problemu. Stadii regeneratsii (Soobshchenie 1). Ortopediya, travmatologiya i protezirovanie [Reparative bone regeneration: a modern look at the problem. Regeneration Stages (Message 1). Orthopedics, traumatology and prosthetics], № 1, pp. 77-84.

33. Gerstenfeld, L.C., Alkhiary, Y.M.,  Krall, E.A. et al. (2006). Three-dimensional reconstruction of fracture callus morphogenesis. Journal of Histochemistry & Cytochemistry, Vol. 54(11), pp. 1215-1228.

34. Oryan, A. Monazzah, S., Bigham-Sadegh, A. (2015). Bone injury and fracture healing biology. Biomed. Environ Sci, Vol. 28(1), pp. 57-71.

35. Deckers, M.M. van Bezooijen, R.L., van der Horst, G. et al. (2002). Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology, Vol. 143, pp. 1545-1553.

36. Panetta, J., Gupta, M.D., Michael,T.L. et al. (2010). Bone regeneration and repair.Current stem cell research & therapy, Vol. 5(2), pp. 122-128.

37. Marsh, D.R., Li, G. (1999). The biology of fracture healing: optimising outcome. Br. Med. Bull., Vol. 55(4),
pp. 856-869.

38. Gololobov, V.G. Dulaev, A.K. Deev, R.V. i dr. (2006). Morfofunktsionalnaya organizatsiya, reaktivnost i regeneratsiya kostnoy tkani [Morphofunctional organization, reactivity and regeneration of bone tissue]. Pod red. prof. R.K. Danilova, prof. V.M. Shapovalova. – SPb.: VMedA, 47 p.

39. Johnson, A.L.,John, E.F. Vannini, H.R. (2005). AO Principles of Fracture Management in the Dog and Cat,
A.L. Johnson, Switzerland:, AO Publishing, 530 p.

40. Geris, L.,Gerisch Sloten, A., Weiner, J.V. et al. (2008). Angiogenesis in bone fracture healing: a bioregulatory model. J. Theor. Biol., Vol. 251, pp. 137-158.

41. Beamer, B., Hettrich, C., Lane, J. (2010). Vascular endothelial growth factor: an essential component of angiogenesis and fracture healing. J. HSS, Vol. 6, pp. 85-94.

42. LaStayo, P.C.,Winters, K.M., Hardy, M. (2003). Fracture healing: bone healing, fracture management, and current concepts related to the hand. J. Hand Ther., Vol. 16(2), pp. 81-93.

43. Pilitsis, J.G., Lucas, D.R., Rengachary, S.S. (2002). Bone healing and spinal fusion.Neurosurg Focus, Vol. 13(6), pp. 1-6.

44. Cho, T.J., Gerstenfeld, L.C., Einhorn, T.A. (2002). Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J. of Bone & Mineral Research, Vol. 17(3), pp. 513-520.

45. Mountziaris, P.M., Mikos, A.G. (2008). Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Engineering Part B: Reviews, Vol 14, pp. 179-186.

46. de Almeida, J.M., Bosco, A.F., Faleiros, P.L. (2015). Effects of oestrogen deficiency and 17β-estradiol therapy on bone healing in calvarial critical size defects treated with bovine bone graft. Arch Oral Biol., Vol 60(4), pp. 631-641.

47. Nakajima, A., Shimoji, N., Shiomi, K. et al. (2002). Mechanisms for the enhancement of fracture healing in rats treated with intermittent low-dose human parathyroid hormone. J Bone Miner Res., Vol. 17., pp. 2038-2047.

48. Rublenko, M.V., Andrієts, V.G., Semenyak, S.A. ta іn. (2015). Vikoristannya kompozitnikh materіalіv za perelomіv trubchastikh kіstok u tvarin: naukovo-metodichniy posіbnik [Use of composite materials for fractures of tubular bones in animals: scientific and methodical manual].  Bіla Tserkva, 86 p.

49. Rublenko, M.V., Єroshenko, O.V. (2012). Markeri metabolіzmu spoluchnoi tkanini za perelomіv trubchastikh kіstok u sobak [Markers of connective tissue metabolism due to fractures of tubular bones in dogs]. Veterinarna meditsina: Mіzhvіd. temat. nauk. zb., V. 96, pp. 321-324.

50. Shaganenko, V.S. (2012). Klіnіko-patogenetichna rol oksidu azotu ta korektsіya yogo rіvnya za khіrurgіchnoi patologіi zapalnogo ґenezu v tvarin rіznikh vidіv : avtoref. dis. na zdobuttya nauk. stupenya kand. vet. nauk: spets. 16.00.05 „Veterinarna khіrurgіya” [Clinico - pathogenetic role of nitric oxide and correction of its level in the surgical pathology of inflammatory genesis in animals of different species: author's abstract. dis for obtaining sciences. Degree Candidate vet Sciences: special 16.00.05 "Veterinary surgery"], 23 p.

51. Paskalev, M. Krastev, S., Filipov, J. (2005). Changes in some serum bone markers after experimental fracture and intramedullary osteosynthesis in dogs. Trakia journal of sciences, Vol. 3, pp. 46-50.

52. Sousa, C. Abreu, H., Viegas C. (2011). Serum total and bone alkaline phosphatase and tartrate-resistant acid phosphatase activities for the assessment of bone fracture healing in dogs. Arq. Bras. Med. Vet. Zootec, Vol. 63, pp. 1007-1011.

PDF icon nvvm_2_2017_rublenkom.pdf253.83 KB