You are here

The use of neuroleptics, sedatives and anesthetics for anxiolytic therapy in animals

An important area for improving antidepressant treatment is the expansion of the indications for neuroleptics, anesthetics and sedatives. All these drugs have pronounced neurotropic effects. The aim of our work is to study the published scientifc evidence on the potential of neuroleptics, anesthetics and sedatives for anxiolytic therapy. A systematic literature review was used to search for publications on the topic of the study. The PubMed database (https://pubmed.ncbi.nlm.nih.gov) was used to search for scientifc articles. The literature data indicates that ketamine is used to treat recurrent anxiety in both humans and animals. It provides rapid and sustained relief of anxiety symptoms in a variety of its clinical presentations. The anxiolytic effect occurs within the frst 12 hours after administration and remains effective for 1 to 2 weeks. The anxiolytic effect of ketamine is due to its effect on hippocampal neurotropic factor activity. Diazepam can signifcantly reduce anxiety and depressive symptoms as well as neuroinflammation in brain-injured mice. It causes a dose-dependent increase in motor activity. In combination with metformin, diazepam is the preferred treatment for type 2 diabetes mellitus in stressed animals. Intermittent use of diazepam is useful to avoid the development of physical dependence when the drug is used for a long period of time. Acepromazine is promising to be used for anxiolytic effect in animals. A combined protocol with acepromazine signifcantly reduced signs of stress, anxiety and aggression during veterinary visits and had an anxiolytic effect in dogs. Acepromazine reduces the negative effects of transport stress in wild ungulates. Dexmedetomidine is used for sedation in both human and veterinary medicine. This drug is a promising candidate for the experimental treatment of stress-related diseases such as anxiety disorders or post-traumatic stress disorder. We believe that further research in this area should be conducted in controlled comparative studies to determine the optimal doses and duration of administration of potential anxiolytics, considering the species, age, sex, physiological state and other relevant clinical parameters of the animals studied. Therefore, systematic and detailed studies will help us not only to understand the effectiveness, but also to provide safe and individualized treatment. This research can improve our understanding of the use of anxiolytics in veterinary practice, which is of key importance for improving the quality of animal welfare. In our opinion, the use of anesthetics, neuroleptics and sedatives, which are now widely used for sedation or general anesthesia, opens new possibilities for the treatment of behavioral and anxiety disorders in animals.

Key words: anxiety, veterinary medicine, neuroleptics, sedatives, ketamine, acepromazine, diazepam, medetomidine.

  1. Dewey, C.W., Davies, E.S., Xie, H. (2019). Canine cognitive dysfunction: pathophysiology, diagnosis, and treatment. Vet Clin North Am Small Anim Pract. Vol. 49, no. 3, pp. 477–499. DOI:10.1016/j.cvsm. 2019.01.013.
  2. Rana, T., Behl, T., Sehgal, A. (2022). Exploring the role of neuropeptides in depression and anxiety. Prog Neuropsychopharmacol Biol Psychiatry. Vol. 114, 110478 p. DOI:10.1016/j.pnpbp.2021.110478.
  3. Schiele, M.A., Domschke, K. (2018). Epigenetics at the crossroads between genes, environment and resilience in anxiety disorders. Genes Brain Behav. Vol. 17, no. 3, e12423. DOI:10.1111/gbb.12423.
  4. Robinson, O.J., Pike, A.C., Cornwell, B. (2019). The translational neural circuitry of anxiety. J. Neurol Neurosurg Psychiatry, Vol. 90, no. 12, pp. 1353–1360. DOI:10.1136/jnnp-2019-321400.
  5. Jacobs, D.S., Moghaddam, B. (2021). Medial prefrontal cortex encoding of stress and anxiety. Int Rev Neurobiol. Vol. 158, pp. 29–55. DOI:10.1016/bs.irn.20 20.11.014.
  6. Hu, P., Lu, Y., Pan, B.X. (2022). New insights into the pivotal role of the amygdala in inflammation-related depression and anxiety disorder. Int J Mol Sci., Vol. 23, no. 19, 11076 p. DOI:10.3390/ijms231911076.
  7. Zhang, N., Yao, L. (2019). Anxiolytic Effect of essential oils and their constituents: A review. J Agric Food Chem., Vol. 67, no. 50, pp. 13790–13808. DOI:10.1021/acs.jafc.9b00433.
  8. Wang, C., Yang, S., Deng, J. (2023). The research progress on the anxiolytic effect of plant-derived flavonoids by regulating neurotransmitters. Drug Dev Res. Vol. 84, no. 3, pp. 458–469. DOI:10.1002/ ddr.22038.
  9. Flores-Bazán, T., Betanzos-Cabrera, G., Guerrero-Solano, J.A. (2023). Pomegranate (Punica granatum L.) and its phytochemicals as anxiolytic; an underreported effect with therapeutic potential: A systematic review. Brain Res. Vol. 1820, 148554 p. DOI:10.1016/j.brainres.2023.148554.
  10. Andrade, J.C., Monteiro, Á.B., Andrade, H.H.N. (2021). Involvement of GABA<sub- >A</sub> receptors in the anxiolytic-like effect of hydroxycitronellal. Biomed Res Int. 9929805 p. DOI:10.1155/2021/99 29805.
  11. Hocayen, P.A.S., Wendler, E., Vecchia, D.D. (2019). The nitrergic neurotransmission contributes to the anxiolytic-like effect of Citrus sinensis essential oil in animal models. Phytother Res. Vol. 33, no. 4, pp. 901–909. DOI:10.1002/ptr.6281.
  12. Macías-Carballo, M., Rosas-Navarro, S., López-Meraz, M.L. (2021). Anxiolytic effect of chronic intake of supplemental magnesium chloride in rat. Behav Brain Res. Vol. 413, 113460 p. DOI:10.1016/j.bbr.2021. 113460.
  13. Silveira, V., Santos Rubio, K.T., Poleti Martucci, M.E. (2022). Anxiolytic effect of Anthemis nobilis L. (roman chamomile) and Citrus reticulata Blanco (tangerine) essential oils using the light-dark test in zebrafsh (Danio rerio). J Ethnopharmacol, Vol. 298, 115580 p. DOI:10.1016/j.jep.2022.115580.
  14. Orhan, I.E. (2021). A Review focused on molecular mechanisms of anxiolytic effect of valerina ofcinalis L. in connection with its phytochemistry through in vitro/in vivo studies. Curr Pharm Des. Vol. 27, no. 28, pp. 3084–3090. DOI:10.2174/1381612 827666210119105254.
  15. Nguyen, L.T.H., Nguyen, N.P.K., Tran, K.N. (2022). Anxiolytic-like effect of inhaled cinnamon essential oil and its main component cinnamaldehyde in animal models. Molecules. Vol. 27, no. 22, 7997 p. DOI:10.3390/molecules27227997.
  16. Fraga, D.B., Olescowicz, G., Moretti M. (2018). Anxiolytic effects of ascorbic acid and ketamine in mice. J Psychiatr Res., Vol. 100, pp. 16–23. DOI:10.1016/j.jpsychires.2018.02.006.
  17. Gupta, S., Rajiah, P., Middlebrooks, E.H. (2018). Systematic review of the literature: best practices. Аcademic Radiology. Vol. 25, no. 11, pp. 1481– 1490. DOI:10.1016/j.acra.2018.04.025.
  18. Papp, M., Gruca, P., Lason-Tyburkiewicz, M. (2017). Antidepressant, anxiolytic and procognitive effects of subacute and chronic ketamine in the chronic mild stress model of depression. Behav Pharmacol. Vol. 28, no. 1, pp. 1–8. DOI:10.1097/FBP.0000000000000259.
  19. De Campos, E.G., Bruni, A.T, De Martinis, B.S. (2015). Ketamine induces anxiolytic effects in adult zebrafsh: A multivariate statistics approach. Behav Brain Res. Vol. 292, pp. 537–546. DOI:10.1016/j. bbr.2015.07.017.
  20. Banov, M.D., Young, J.R., Dunn, T. (2020). Efcacy and safety of ketamine in the management of anxiety and anxiety spectrum disorders: a review of the literature. CNS Spectr. Vol. 25, no. 3, pp. 331–342. DOI:10.1017/S1092852919001238.
  21. Refsgaard, L.K., Pickering, D.S., Andreasen, J.T. (2017). Investigation of antidepressant- like and anxiolytic-like actions and cognitive and motor side effects of four N-methyl-D-aspartate receptor antagonists in mice. Behav Pharmacol. Vol. 28, no. 1, pp. 37–47. DOI:10.1097/FBP.0000000000000266.
  22. Tully, J.L., Dahlén, A.D., Haggarty, C.J. (2022). Ketamine treatment for refractory anxiety: A systematic review. Br J Clin Pharmacol, Vol. 88, no. 10, pp. 4412–4426. DOI:10.1111/bcp.15374.
  23. Young, S.N. (2013). Single treatments that have lasting effects: some thoughts on the antidepressant effects of ketamine and botulinum toxin and the anxiolytic effect of psilocybin. J Psychiatry Neurosci., Vol. 38, no. 2, pp. 78–83. DOI:10.1503/jpn.120128.
  24. Hartland, H., Mahdavi, K., Jelen, L.A. (2023). A transdiagnostic systematic review and meta-analysis of ketamine’s anxiolytic effects. J Psychopharmacol., Vol. 37, no. 8, pp. 764–774. DOI:10.1177/02698811 231161627.
  25. Dwyer, J.B., Landeros-Weisenberger, A., Johnson, J.A. (2021). Efcacy of intravenous ketamine in adolescent treatment-resistant depression: A Randomized Midazolam-Controlled Trial. Am J Psychiatry, Vol. 178, no. 4, pp. 352–362. DOI:10.1176/appi.ajp.2020.20010018.
  26. Truppman Lattie, D., Nehoff, H., Neehoff, S. (2021). Anxiolytic effects of acute and maintenance ketamine, as assessed by the Fear Questionnaire subscales and the Spielberger State Anxiety Rating Scale. J Psychopharmacol., Vol. 35, no. 2, pp. 137–141. DOI:10.1177/0269881120953991.
  27. Holubova, K., Kleteckova, L., Skurlova, M. (2016). Rapamycin blocks the antidepressant effect of ketamine in task-dependent manner. Psychopharmacology (Berl), Vol. 233, no. 11, pp. 2077–2097. DOI:10.1007/s00213-016-4256-3.
  28. Engin, E., Treit, D., Dickson, C.T. (2009). Anxiolytic- and antidepressant-like properties of ketamine in behavioral and neurophysiological animal models. Neuroscience, Vol. 161, no. 2, pp. 359–369. DOI:10.1016/j.neuroscience.2009.03.038.
  29. Zhang, L.M., Zhou, W.W., Ji, Y.J. (2015). Anxiolytic effects of ketamine in animal models of posttraumatic stress disorder. Psychopharmacology (Berl), Vol. 232, no. 4, pp. 663–672. DOI:10.1007/ s00213-014-3697-9.
  30. Silote, G.P., de Oliveira, S.F.S., Ribeiro, D.E. (2020). Ketamine effects on anxiety and fear-related behaviors: Current literature evidence and new fndings. Prog Neuropsychopharmacol Biol Psychiatry, Vol. 100, 109878 p. DOI:10.1016/j.pnpbp. 2020.109878.
  31. Wojtas, A., Bysiek, A., Wawrzczak-Bargiela, A. (2022). Effect of psilocybin and ketamine on brain neurotransmitters, glutamate receptors, dna and rat behavior. Int J Mol Sci., Vol. 23, no. 12, 6713 p. DOI:10.3390/ijms23126713.
  32. Caldiroli, A., Capuzzi, E., Tagliabue, I. (2021). Augmentative Pharmacological Strategies in Treatment-Resistant Major Depression: A Comprehensive Review. Int J Mol Sci., Vol. 22, no. 23, 13070 p. DOI:10.3390/ijms222313070.
  33. Iñiguez, S.D., Flores-Ramirez, F.J., Riggs, L.M. (2018). Vicarious social defeat stress induces depression-related outcomes in female mice. Biol Psychiatry, Vol. 83, no. 1, pp. 9–17. DOI:10.1016/j. biopsych.2017.07.014.
  34. Alqahtani, F., Assiri, M.A., Mohany, M. (2020). Coadministration of ketamine and perampanel improves behavioral function and reduces inflammation in acute traumatic brain injury mouse model. Biomed Res Int., 3193725 p. DOI:10.1155/2020/3193725.
  35. Ľupták, M., Fišar, Z., Hroudová, J. (2022). Agomelatine, ketamine and vortioxetine attenuate energy cell metabolism-in vitro study. Int J Mol Sci., Vol. 23, no. 22, 13824 p. DOI:10.3390/ijms232213824.
  36. Nguyen, L., Lucke-Wold, B.P., Logsdon, A.F. (2016). Behavioral and biochemical effects of ketamine and dextromethorphan relative to its antidepressant-like effects in Swiss Webster mice. Neuroreport, Vol. 27, no. 14, pp. 1004–1011. DOI:10.1097/WNR.0000000000000646.
  37. Rodrigues Garcia, T., Freire, P.T.C., da Silva, A.W. (2023). Anxiolytic and anticonvulsant effect of Ibuprofen derivative through GABAergic neuromodulation in adult Zebrafsh. J Biomol Struct Dyn., Vol. 41, no. 21, pp. 12055–12062. DOI:10.1080/07391102.2023.2170915.
  38. Pádua-Reis, M., Nôga, D.A., Tort, A.B.L. (2021). Diazepam causes sedative rather than anxiolytic effects in C57BL/6J mice. Sci Rep., Vol. 11, no. 1, 9335 p. DOI:10.1038/s41598-021-88599-5.
  39. Kosari-Nasab, M., Shokouhi, G., Ghorbanihaghjo, A. (2018). Anxiolytic- and antidepressant-like effects of Silymarin compared to diazepam and fluoxetine in a mouse model of mild traumatic brain injury. Toxicol Appl Pharmacol., Vol. 338, pp. 159–173. DOI:10.1016/j.taap.2017.11.012.
  40. Onofre-Campos, D., González-Trujano, M.E., Moreno-Pérez, G.F. (2023). Anxiolytic-like effects and quantitative eeg profle of palmitone induces responses like buspirone rather than diazepam as clinical drugs. Molecules, Vol. 28, no. 9, 3680 p. DOI:10.3390/molecules28093680.
  41. File, S.E., Cheeta, S., Akanezi, C. (2001). Diazepam and nicotine increase social interaction in gerbils: a test for anxiolytic action. Brain Res., Vol. 888, no. 2, pp. 311–313. DOI:10.1016/s0006-8993(00)03102-4.
  42. Fernández-Guasti, A., Ferreira, A., Picazo, O. (2001). Diazepam, but not buspirone, induces similar anxiolytic-like actions in lactating and ovariectomized Wistar rats. Pharmacol Biochem Behav., Vol. 70, no. 1, pp. 85–93. DOI:10.1016/s0091-3057(01)00586-x.
  43. Taukulis, H.K., Fillmore, M.T., Ruggles, J.L. (1992). Neuroleptic-induced changes in the anxiolytic and myorelaxant properties of diazepam in the rat. Pharmacol Biochem Behav., Vol. 70, no. 1, pp. 13–21. DOI:10.1016/0091-3057(92)90052-h.
  44. Garabadu, D., Krishnamurthy, S. (2014). Diazepam potentiates the antidiabetic, antistress and anxiolytic activities of metformin in type-2 diabetes mellitus with cooccurring stress in experimental animals. Biomed Res Int., 693074 p. DOI:10.1155/2014/693074.
  45. Genario, R., Giacomini, A.C.V.V., de Abreu, M.S. (2020). Sex differences in adult zebrafsh anxiolytic-like responses to diazepam and melatonin. Neurosci Lett., Vol. 714, 134548 p. DOI:10.1016/j.neulet.2019. 134548.
  46. Fernández-Guasti, A., Picazo, O. (1997). Anxiolytic actions of diazepam, but not of buspirone, are influenced by gender and the endocrine stage. Behav Brain Res., Vol. 88, no. 2, pp. 213–218. DOI:10.1016/ s0166-4328(97)00047-8.
  47. Acikmeşe, B., Haznedar, S., Hatipoğlu, I. (2012). Evaluation of anxiolytic effect and withdrawal anxiety in chronic intermittent diazepam treatment in rats. Behav Pharmacol., Vol. 23, no. 2, pp. 215–219. DOI:10.1097/FBP.0b013e3283512c6d.
  48. Zhang, J., Li, W., Liao, T. (2023). Diazepam promotes active avoidance extinction associating with increased dorsal CA3 and amygdala activity. Brain Res., Vol. 1817, 148481 p. DOI:10.1016/j.brainres. 2023.148481.
  49. Walia, V., Garg, C., Garg, M. (2019). Lithium potentiated, pyridoxine abolished and fluoxetine attenuated the anxiolytic effect of diazepam in mice. Brain Res Bull, Vol. 150, pp. 343–353. DOI:10.1016/j. brainresbull.2019.06.008.
  50. Costa, R.S., Jones, T., Robbins, S. (2023). Gabapentin, melatonin, and acepromazine combination prior to hospital visits decreased stress scores in aggressive and anxious dogs in a prospective clinical trial. J Am Vet Med Assoc., pp. 1–6. DOI:10.2460/javma.23.02.0067.
  51. Bergeron, R., Scott, S.L., Emond, J.P. (2002). Physiology and behavior of dogs during air transport. Can J Vet Res., Vol. 66, no. 3, pp. 211–216.
  52. López-Olvera, J.R., Marco, I., Montané, J. (2007). Effects of acepromazine on the stress response in Southern chamois (Rupicapra pyrenaica) captured by means of drive-nets. Can J Vet Res., Vol. 71, no. 1, pp. 41–51.
  53. López-Olvera, J.R., Marco, I., Montané, J. (2006). Transport stress in Southern chamois (Rupicapra pyrenaica) and its modulation by acepromazine. Vet J., Vol. 172, no. 2, pp. 347–355. DOI:10.1016/j. tvjl.2005.06.007.
  54. Montané, J., Marco, I., López-Olvera, J.R. (2007). Effect of acepromazine on the signs of capture stress in captive and free-ranging roe deer (Capreolus capreolus). Vet Rec., Vol. 160, no. 21, pp. 730–738. DOI:10.1136/vr.160.21.730.
  55. А: Casas-Díaz, E., Marco, I., López-Olvera, J.R. (2012). Effect of acepromazine and haloperidol in male Iberian Ibex (Capra pyrenaica) captured by box-trap. J Wildl Dis., Vol. 48, no. 3, pp. 763–767. DOI:10.7589/0090-3558-48.3.763.
  56. Montané, J., Marco, I., López-Olvera, J. (2003). Effects of acepromazine on capture stress in roe deer (Capreolus capreolus). J Wildl Dis., Vol. 39, no. 2, pp. 375–386. DOI:10.7589/0090-3558-39.2.375.
  57. Casas-Díaz, E., Marco, I., López-Olvera, J.R. (2010). Use of acepromazine for stress control in Spanish ibex (Capra pyrenaica) captured by drive-net. Vet J., Vol. 183, no. 3, pp. 332–336. DOI:10.1016/j. tvjl.2008.11.003.
  58. Bosch, O.G., Dornbierer, D.A., Bavato, F. (2023). Dexmedetomidine in psychiatry: repurposing of its fast-acting anxiolytic, analgesic and sleep modulating properties. Pharmacopsychiatry, Vol. 56, no. 2, pp. 44–50. DOI:10.1055/a-1970-3453.
  59. Väisänen, M., Raekallio, M., Kuusela, E. (2002). Evaluation of the perioperative stress response in dogs administered medetomidine or acepromazine as part of the preanesthetic medication. Am J Vet Res., Vol. 63, no. 7, pp. 969–975. DOI:10.2460/ajvr.2002.63.969.
  60. Aghamiri, S.M., Samimi, A.S., Hajian, M. (2022). Effect of xylazine, detomidine, medetomidine and dexmedetomidine during laparoscopic SCNT embryo transfer on pregnancy rate and some physiological variables in goats. BMC Vet Res., Vol. 18, no. 1, 98 p. DOI:10.1186/s12917-022-03194-8.
  61. Creighton, C.M., Lemke, K.A., Lamont, L.A. (2012). Comparison of the effects of xylazine bolus versus medetomidine constant rate infusion on the stress response, urine production, and anesthetic recovery characteristics in horses anesthetized with isoflurane. J Am Vet Med Assoc., Vol. 240, no. 8, pp. 998–1002. DOI:10.2460/javma.240.8.998.
  62. Repova, K., Baka, T., Krajcirovicova, K. (2022). Melatonin as a potential approach to anxiety treatment. Int J Mol Sci., Vol. 23, no. 24, 16187 p. DOI:10. 3390/ijms232416187.
  63. Olivier, J.D.A., Olivier, B. (2020). Translational Studies in the Complex Role of Neurotransmitter Systems in Anxiety and Anxiety Disorders. Adv Exp Med Biol., Vol. 1191, pp. 121–140. DOI:10.1007/978-981-32-9705-0_8.
  64. Ganella, D.E., Kim, J.H. (2014). Developmental rodent models of fear and anxiety: from neurobiology to pharmacology. Br J Pharmacol., Vol. 171, no. 20, pp. 4556–4574. DOI:10.1111/bph.12643.
  65. Dias, B.G., Banerjee, S.B., Goodman, J.V. (2013). Towards new approaches to disorders of fear and anxiety. Curr Opin Neurobiol., Vol. 23, no. 3, pp. 346–352. DOI:10.1016/j.conb.2013.01.013.
  66. Kormos, V., Gaszner, B. (2013). Role of neuropeptides in anxiety, stress, and depression: from animals to humans. Neuropeptides, Vol. 47, no. 6, pp. 401–419. DOI:10.1016/j.npep.2013.10.014.
  67. Wang, Y.C., Yu, Y.H., Tsai, M.L. (2018). Motor function in an animal model with ouabain-induced bipolar disorder and comorbid anxiety behavior. Psychiatry Res., Vol. 268, pp. 508–513. DOI:10.1016/j. psychres.2018.07.031.
  68. Murrough, J.W., Yaqubi, S., Sayed, S. (2015). Emerging drugs for the treatment of anxiety. Expert Opin Emerg Drugs, Vol. 20, no. 3, Р. 393–406. DOI:10.1517/14728214.2015.1049996.
AttachmentSize
PDF icon lukyanenko_1_2024.pdf405.39 KB