You are here

Сows behavior under different physiological states and keeping methods

Taking into account the peculiarities of the behavior of cows, in particular in the conditions of modern intensive animal husbandry, is an important factor in ensuring the health of the herd and obtaining high-quality livestock products. Behavioral indicators can be effectively used to monitor animal feeding and housing conditions. The aim of the work was to get acquainted with the stereotype of behavior of cows in industrial conditions under different physiological conditions and methods of keeping. For this, a search, selection and analysis of publications was carried out according to the topic of the study. Web of Science Core Collection and PubMed scientometric databases were used to search for scientific articles. It has been established that in the conditions of modern dairy farms, cows should be in a lying position for about half of the daily time. The soft and dry surface of the couches, their sufficient spatial parameters, ensuring adequate conditions of the external environment (temperature, humidity, wind speed, lighting, etc.) The quality of rest also depends on the social environment, physiological state, individual characteristics of cows, etc. Providing free access to walking areas and pastures contributes to a more complete expression of the natural behavior of dairy cows. Cows prefer to stay outside the premises mainly at night. Open pastures are more attractive to cows than walking areas with sand or straw. Foraging behavior is an important factor in ensuring cow health and high milk productivity. It is determined by the parameters of cows' access to fodder and the fodder table, the quality, quantity and feeding algorithm of fodder mass. Feeding of cows should be organized in such a way as to ensure constant free access of animals to the feed table, constant satisfactory, without physical obstacles, availability of quality feed on the feed table. Maternal behavior of cows is an important indicator that allows you to assess the condition and conditions of keeping cows before, during and after calving. Therefore, changes in the behavior of cows can have important diagnostic and prognostic value. Conducting further research in this direction is an urgent task of veterinary science and practice.

Key words: stereotypeof behavior, cows, methods of maintenance, calves, exercise, diet, dairy farms.

  1. Britt, J.H., Cushman, R.A., Dechow, C.D., Dobson, H., Humblot, P., Hutjens, M.F., Jones, G.A., Ruegg, P.S., Sheldon, I.M., Stevenson, J.S. (2018). Invited review: Learning from the future-A vision for dairy farms and cows in 2067. J Dairy Sci. 101(5), pp. 3722–3741. DOI:10.3168/jds.2017-14025.
  2. Lidfors, L., Berg, C., Algers, B. (2005). Integration of natural behavior in housing systems. Ambio. 34(4-5), pp. 325–30. DOI:10.1639/0044- 7447(2005)034 [0325:ionbih]2.0.co;2.
  3. Mee, J.F., Boyle, L.A. (2020). Assessing whether dairy cow welfare is "better" in pasture-based than in confinement-based management systems. N Z Vet J. 68(3), pp. 168–177. DOI:10.1080/00480169.2020.172 1034
  4. Beaver, A., Ritter, C., von Keyserlingk, MAG. (2019). The Dairy Cattle Housing Dilemma: Natural Behavior Versus Animal Care. Vet Clin North Am Food Anim Pract. 35(1), pp. 11–27. DOI:10.1016/j. cvfa.2018.11.001.
  5. Polsky, L., von Keyserlingk, MAG. (2017). Invited review: Effects of heat stress on dairy cattle welfare. J Dairy Sci. 100(11), pp. 8645–8657. DOI:10.3168/ jds.2017-12651. Epub 2017 Sep 13.
  6. Bewley, J.M., Robertson, L.M., Eckelkamp, E.A. (2017). A 100-Year Review: Lactating dairy cattle housing management. J Dairy Sci. 100(12). pp. 10418– 10431. DOI:10.3168/jds.2017-13251.
  7. Beaver, A., Proudfoot, K.L., von Keyserlingk, MAG. (2020). Symposium review: Considerations for the future of dairy cattle housing: An animal welfare perspective. J Dairy Sci. 103(6). pp. 5746–5758. DOI:10.3168/jds.2019-17804.
  8. Tucker, C.B., Jensen, M.B., de Passillé, A.M., Hänninen, L., Rushen, J. Invited review: Lying time and the welfare of dairy cows. J Dairy Sci. 2021. 104(1), pp. 20–46. DOI:10.3168/jds.2019-18074.
  9. Cook, N.B. (2019). Optimizing Resting Behavior in Lactating Dairy Cows Through Freestall Design. Vet Clin North Am Food Anim Pract. 35(1), pp. 93– 109. DOI:10.1016/j.cvfa.2018.10.005.
  10. Krawczel P.D., Lee A.R. (2019). Lying Time and Its Importance to the Dairy Cow: Impact of Stocking Density and Time Budget Stresses. Vet Clin North Am Food Anim Pract. 35(1), pp. 47–60. DOI:10.1016/j. cvfa.2018.11.002.
  11. Abade, C.C., Fregonesi, J.A., von Keyserlingk, M.A., Weary, D.M. (2015). Dairy cow preference and usage of an alternative freestall design. J Dairy Sci. 98(2), pp. 960–5. DOI:10.3168/jds.2014-8527.
  12. Campler, M.R., Munksgaard, L., Jensen, M.B. (2019). The effect of transition cow housing on lying and feeding behavior in Holstein dairy cows. J Dairy Sci. 102(8), pp. 7398–7407. DOI:10.3168/jds.2019- 16532.
  13. Ito, K., Weary, D.M., von Keyserlingk, M.A. (2009). Lying behavior: assessing within- and between-herd variation in free-stall-housed dairy cows. J Dairy Sci. 92(9), pp. 4412–20. DOI:10.3168/jds.2009- 2235.
  14. Sahu, B.K., Parganiha, A., Pati, A.K. (2019). Spatiotemporal variability in activity patterns of urban street cattle as function of environmental factors. Chronobiol Int. 36(10), pp. 1362–1372. DOI:10.1080/0742 0528.2019.1644345.
  15. Wolfe, T., Vasseur, E., DeVries, T.J., Bergeron, R. (2018). Effects of alternative deep bedding options on dairy cow preference, lying behavior, cleanliness, and teat end contamination. J Dairy Sci. 101(1), pp. 530–536. DOI:10.3168/jds.2016-12358.
  16. Shepley, E., Obinu, G., Bruneau, T., Vasseur, E. (2019). Housing tiestall dairy cows in deep-bedded pens during an 8-week dry period: Effects on lying time, lying postures, and rising and lying-down behaviors. J Dairy Sci. 102(7), pp. 6508–6517. DOI:10.3168/ jds.2018-15859.
  17. Boyer, V., Edwards, E., Guiso, M.F., Adam, S., Krawczel, P., de Passillé, A.M., Vasseur, E. (2021). Making tiestalls more comfortable: III. Providing additional lateral space to improve the resting capacity and comfort of dairy cows. J Dairy Sci. 104(3). pp. 3327– 3338. DOI:10.3168/jds.2019-17667.
  18. Schütz, K.E., Cave, V.M., Cox, N.R., Huddart, F.J., Tucker, C.B. (2019). Effects of 3 surface types on dairy cattle behavior, preference, and hygiene. J Dairy Sci. 102(2), pp. 1530–1541. DOI:10.3168/jds.2018- 14792.
  19. Platz, S., Ahrens, F., Bendel, J., Meyer, H.H., Erhard, M.H. (2008). What happens with cow behavior when replacing concrete slatted floor by rubber coating: a case study. J Dairy Sci. 91(3), pp. 999–1004. DOI:10.3168/jds.2007-0584.
  20. Schütz, K.E., Rogers, A.R., Poulouin, Y.A., Cox, N.R., Tucker, C.B. (2010). The amount of shade influences the behavior and physiology of dairy cattle. J Dairy Sci. 93(1), pp. 125–33. DOI:10.3168/jds.2009- 2416.
  21. Palacio, S., Bergeron, R., Lachance, S., Vasseur, E. (2015). The effects of providing portable shade at pasture on dairy cow behavior and physiology. J Dairy Sci. 98(9), pp. 6085–93. DOI:10.3168/jds.2014- 8932.
  22. John, A.J., Cullen, B.R., Oluboyede, K., Freeman, M.J., Kerrisk, K.L., Garcia, S.C., Clark, C.E.F. (2019). The effect of pasture quantity temporal variation on milking robot utilization. J Dairy Sci. 102(3), pp. 2551–2559. DOI:10.3168/ jds.2018-14801.
  23. Riaboff, L., Couvreur, S., Madouasse, A., RoigPons, M., Aubin, S., Massabie, P., Chauvin, A., Bédère, N., Plantier, G. (2020). Use of Predicted Behavior from Accelerometer Data Combined with GPS Data to Explore the Relationship between Dairy Cow Behavior and Pasture Characteristics. Sensors (Basel). 20(17), 4741 p. DOI:10.3390/s20174741.
  24. Spörndly, E., Wredle, E. (2005). Automatic milking and grazing effects of location of drinking water on water intake, milk yield, and cow behavior. J Dairy Sci. 88(5), pp. 1711–22. DOI:10.3168/jds. S0022-0302(05)72844-7.
  25. Smid, A.M.C., Burgers, E.E.A., Weary, D.M., Bokkers, E.A.M., von Keyserlingk, MAG. (2019). Dairy cow preference for access to an outdoor pack in summer and winter. J Dairy Sci. 102(2), pp. 1551– 1558. DOI:10.3168/jds.2018-15007.
  26. Smid, A.M.C., Weary, D.M., von Keyserlingk, MAG. (2020). Effect of outdoor open pack space allowance on the behavior of freestall-housed dairy cows. J Dairy Sci. 103(4), pp. 3422–3430. DOI:10.3168/ jds.2019-17066.
  27. Smid, A.C., Weary, D.M., Costa, J.H.C., von Keyserlingk, MAG. (2018). Dairy cow preference for different types of outdoor access. J Dairy Sci. 101(2), pp. 1448–1455. DOI:10.3168/jds.2017-13294.
  28. Motupalli, P.R., Sinclair, L.A., Charlton, G.L., Bleach, E.C., Rutter, S.M. (2014). Preference and behavior of lactating dairy cows given free access to pasture at two herbage masses and two distances. J Anim Sci. 92(11), pp. 5175–84. DOI: 10.2527/jas.2014-8046.
  29. Arnott, G., Ferris, C.P., OConnell, N.E. (2017). Review: welfare of dairy cows in continuously housed and pasture-based production systems. Animal. 11(2), pp. 261–273. DOI:10.1017/S1751731116001336.
  30. Charlton, G.L., Rutter, S.M., East, M., Sinclair, L.A. (2011). Effects of providing total mixed rations indoors and on pasture on the behavior of lactating dairy cattle and their preference to be indoors or on pasture. J Dairy Sci. 94(8), pp. 3875–84. DOI:10.3168/ jds.2011-4172.
  31. John, A.J., Garcia, S.C., Kerrisk, K.L., Freeman, M.J., Islam, M.R., Clark, C.E.F. (2019). The effect of temporal variation in feed quality and quantity on the diurnal feeding behaviour of dairy cows. Animal. 13(11), pp. 2519–2526. DOI:10. 1017/ S1751731119001198.
  32. Naderi, N., Ghorbani, G.R., Sadeghi-Sefidmazgi, A., Kargar, S., Hosseini, Ghaffari, M. (2019). Substitution of corn silage with shredded beet pulp affects sorting behaviour and chewing activity of dairy cows. J Anim Physiol Anim Nutr (Berl). 103(5), pp. 1351– 1364. DOI:10.1111/jpn.13160.
  33. DeVries, T.J. (2019). Feeding Behavior, Feed Space, and Bunk Design and Management for Adult Dairy Cattle. Vet Clin North Am Food Anim Pract. 35(1), pp. 61–76. DOI:10.1016/j.cvfa.2018.10.003.
  34. DeVries, T.J., von Keyserlingk, M.A. (2006). Feed stalls affect the social and feeding behavior of lactating dairy cows. J Dairy Sci. 89(9), pp. 3522–31. DOI: 10.3168/jds.S0022-0302(06)72392-X.
  35. Rioja-Lang, F.C., Roberts, D.J., Healy, S.D., Lawrence, A.B., Haskell, M.J. (2012). Dairy cow feeding space requirements assessed in a Y-maze choice test. J Dairy Sci. 95(7), pp. 3954–60. DOI:10.3168/ jds.2011-4962.
  36. Creutzinger, K.C., Dann, H.M., Krawczel, P.D., Moraes, L.E., Pairis-Garcia, M.D., Proudfoot, K.L. (2021). The effect of stocking density and a blind on the behavior of Holstein dairy cows in group maternity pens. Part II: Labor length, lying behavior, and social behavior. J Dairy Sci. 104(6), pp. 7122–7134. DOI:10.3168/ jds.2020-19745.
  37. Rørvang, M.V., Herskin, M.S., Jensen, M.B. (2017). Dairy cows with prolonged calving seek additional isolation. J Dairy Sci. 100(4), pp. 2967–2975. DOI: 10.3168/jds.2016-11989.
  38. Mazer, K.A., Knickerbocker, P.L., Kutina, K.L., Huzzey, J.M. (2020). Changes in behavior and fecal cortisol metabolites when dairy cattle are regrouped in pairs versus individually after calving. J Dairy Sci. 103(5), pp. 4681–4690. DOI:10. 3168/jds.2019-17593.
  39. Proudfoot, K.L. (2019). Maternal Behavior and Design of the Maternity Pen. Vet Clin North Am Food Anim Pract. 35(1), pp. 111–124. DOI:10.1016/j.cvfa. 2018.10.007.
  40. Wenker, M.L., Bokkers, E.A.M., Lecorps, B., von Keyserlingk, MAG, van Reenen, C.G., Verwer, C.M., Weary, D.M. (2020). Effect of cow-calf contact on cow motivation to reunite with their calf. Sci Rep. 10(1), 14233 p. DOI:10.1038/s41598-020-70927-w.
  41. Edwards, E.M., Krawczel, P.D., Dann, H.M., Schneider, L.G., Whitlock, B., Proudfoot, K.L. (2020). Calving location preference and changes in lying and exploratory behavior of preparturient dairy cattle with access to pasture. J Dairy Sci. 103(6), pp. 5455–5465. DOI:10.3168/jds.2019-17218.
  42. Black, R.A., Krawczel, P.D. (2019). Effect of prepartum exercise on lying behavior, labor length, and cortisol concentrations. J Dairy Sci. 102(12), pp. 11250–11259. DOI:10.3168/jds.2018-16029.
  43. Duncan, N.B., Meyer, A.M. (2019). Locomotion behavior changes in peripartum beef cows and heifers. J Anim Sci. 97(2), pp. 509–520. DOI:10.1093/ jas/ sky448.
  44. Cook, N.B. (2020). Symposium review: The impact of management and facilities on cow culling rates. J Dairy Sci. 103(4), pp. 3846–3855. DOI:10.3168/ jds.2019-17140.
  45. Röttgen, V., Becker, F., Tuchscherer, A., Wrenzycki, C., Düpjan, S., Schön, P.C., Puppe, B. (2018). Vocalization as an indicator of estrus climax in Holstein heifers during natural estrus and superovulation. J Dairy Sci. 101(3), pp. 2383–2394. DOI:10.3168/ jds.2017-13412.
  46. Mc Connachie, E., Smid, A.M.C., Thompson, A.J., Weary, D.M., Gaworski, M.A., von Keyserlingk, MAG. (2018). Cows are highly motivated to access a grooming substrate. Biol Lett. 14(8):20180303. DOI:10.1098/rsbl.2018.0303.
  47. Wang, F.X., Shao, D.F., Li, S.L., Wang, Y.J., Azarfar, A., Cao, Z.J. (2016). Effects of stocking density on behavior, productivity, and comfort indices of lactating dairy cows. J Dairy Sci. 99(5), pp. 3709–3717. DOI:10.3168/jds.2015-10098.
  48. Canario, L., Mignon-Grasteau, S., Dupont-Nivet, M., Phocas, F. (2013). Genetics of behavioural adaptation of livestock to farming conditions. Animal. 7(3), pp. 357–77. DOI: 0.1017/S1751731112001978.
  49. Anderson, N.G. (2019). Introduction: Building from the Cow Up. Vet Clin North Am Food Anim Pract. 35(1), pp. 1–9. DOI:10.1016/j.cvfa.2018.10.001.
  50. Cook, N.B., Nordlund, K.V. (2004). Behavioral needs of the transition cow and considerations for special needs facility design. Vet Clin North Am Food Anim Pract. 20(3), pp. 495–520. DOI:10.1016/j. cvfa.2004.06.011.
AttachmentSize
PDF icon emelyanenko_2_2022.pdf420.74 KB