You are here

×

Error message

Warning: count(): Parameter must be an array or an object that implements Countable in bootstrap_table() (line 238 of /var/www/html/sites/all/themes/bootstrap/templates/system/table.func.php).

Ethological and pathophysiolocal justification of the calcium gluconate usage for the treatment of calves with bronchopneumonia

A prominent feature of the pathogenesis of bronchopneumonia in calves is the development of an inflammatory reaction that negatively affects the structure (consolidation) and function of lung tissue. Due to the spread of the inflammatory reaction, structural and functional changes can become irreversible. The purpose of the study was to compare the effectiveness of calcium gluconate and the nonsteroidal anti–inflammatory drug ketoprofen in the treatment of calves with bronchopneumonia. The research was conducted on the basis of a dairy farm with an average annual yield of 8,500 kg of milk per cow and a scientific laboratory of the Department of Normal and Pathological Physiology of Animals of Bilotserkivsky Bila Tserkva National University. Sick animals aged 3–4.5 months were divided into two groups, control (16 heads) and experimental (12 heads). All sick calves were prescribed antibiotic therapy using the preparation Clamoxan (BioTestLab). Calves of the control group were additionally prescribed the non–steroidal anti–inflammatory drug Kefen (Merial, France), and calcium gluconate (UkrZooVet–organisation ) was prescribed to the calves of the experimental group. The course of bronchopneumonia in calves is characterized by the development of characteristic clinical signs (depressed general condition, tachypnea, tachycardia, cough, secretion of mucus from the nasal passages), minor leukocytosis (13.38±0.46) and signs of dehydration, which is evidenced by relatively high indicators of hematocrit (45.47±2.18%) and total protein (61.14±2.22 g/l). The dynamics of clinical and laboratory indicators were similar in sick calves of both groups. The pathogenetic effect and anti–inflammatory activity are equally effective in both studied drugs: caffeine and calcium gluconate. In calves with bronchopneumonia, a 3–10–fold delay in the conditioned feeding reflex was established. The normalization of clinical and laboratory indicators was accompanied by the restoration of the duration of the implementation of the conditioned feeding reflex, which allows recommending the use of the studied ethological indicators for monitoring the course of bronchopneumonia in calves. We consider the study of the effectiveness of calcium gluconate preparations in other inflammatory pathologies in animals and the extension of indications to the use of ethological indicators to monitor the course of diseases in domestic animals to be a promising direction for further research.

Key words: calves, bronchopneumonia, treatment, calcium gluconate, behavior.

 

  1. Cantón, G., Llada, I., Margineda, C., Urtizbiría, F., Fanti, S., Scioli, V., Fiorentino, M.A., Louge Uriarte, E., Morrell, E., Sticotti, E., Tamiozzo, P. (2022). Mycoplasma bovis – pneumonia and polyarthritis in feedlot calves in Argentina: First local isolation. Rev Argent Microbiol. 54 (4), pp. 299–304. DOI:10.1016/j. ram.2022.02.005.
  2. Jourquin, S., Lowie, T., Debruyne, F., Chantillon, L., Vereecke, N., Boyen, F., Boone, R., Bokma, J., Pardon, B. (2023). Dynamics of subclinical pneumonia in male dairy calves in relation to antimicrobial therapy and production outcomes. J Dairy Sci., 106 (1), pp. 676–689. DOI:10.3168/jds.2022–22212.
  3. Masmeijer, C., Deprez, P., van Leenen, K., De Cremer, L., Cox, E., Devriendt, B., Pardon, B. (2021). Arrival cortisol measurement in veal calves and its association with body weight, protein fractions, animal health and performance. Prev Vet Med. 187:105251. DOI:10.1016/j.prevetmed.2020.105251.
  4. Di Teodoro, G., Marruchella, G., Di Provvido, A., D'Angelo, A.R., Orsini, G., Di Giuseppe, P., Sacchini, F., Scacchia, M. (2020). Contagious Bovine Pleuropneumonia: A Comprehensive Overview. Vet Pathol. 57 (4), pp. 476–489. DOI:10.1177/0300985820921818.
  5. Burrows, D., Slavic, D., Miltenburg, C., Ojkic, D., Brooks, A.S., Caswell, J.L. (2022). Laboratory investigation of cases of fatal bacterial pneumonia in dairy cows. Can Vet J., 63 (8), pp. 845–850. PMCID: PMC9281884.
  6. Prohl, A., Schroedl, W., Rhode, H., Reinhold, P. (2015). Acute phase proteins as local biomarkers of respiratory infection in calves. BMC Vet Res. 11, 167 p. DOI:10.1186/s12917–015–0485–7.
  7. Nagy, O., Tóthová, C., Seidel, H., Paulíková, I., Kovác, G (2013). The effect of respiratory diseases on serum lactate dehydrogenase and its isoenzyme patterns in calves. Pol J Vet Sci., 16 (2), pp. 211–218. DOI:10.2478/pjvs–2013–0030.
  8. Dudek,K., Bednarek,D., Lisiecka,U., Kycko,A., Reichert, M., Kostro, K., Winiarczyk, S. (2020). Analysis of the Leukocyte Response in Calves Suffered from <i>Mycoplasma bovis</i> Pneumonia. Pathogens. 9 (5), 407 p. DOI:10.3390/ pathogens9050407.
  9. Prohl, A., Wolf, K., Weber, C., Müller, K.E., Menge, C., Sachse, K., Rödel, J., Reinhold, P., Berndt,A. (2015). Kinetics of Local and Systemic Leucocyte and Cytokine Reaction of Calves to Intrabronchial Infection with Chlamydia psittaci. PLoS One. 10 (8):e0135161. DOI:10.1371/journal.pone.0135161.
  10. Ider, M., Maden, M. (2022). Biomarkers of infectious pneumonia in naturally infected calves. Am J Vet Res., 83 (8). DOI:10.2460/ajvr.21.10.0172.
  11. Asgharpour, P., Dezfouli, M.R.M., Nadealian, M.G., Eftekhari, Z., Borojeni, G.R.N. (2020). Effects of 1, 25–dihydroxy vitamin D3 on clinical symptoms, pro–inflammatory and inflammatory cytokines in calves with experimental pneumonia. Res Vet Sci., 132, pp. 186–193. DOI:10.1016/j.rvsc. 2020.04.018.
  12. Martin, M.S., Kleinhenz, M.D., White, B.J., Johnson, B.T., Montgomery, S.R., Curtis, A.K., Weeder, M.M., Blasi, D.A., Almes, K.M., Amachawadi, R.G., Salih, H.M., Miesner, M.D., Baysinger, A.K., Nickell, J.S., Coetzee, J.F. (2022). Assessment of pain associated with bovine respiratory disease and its mitigation with flunixin meglumine in cattle with induced bacterial pneumonia. J Anim Sci., 100 (2). DOI:10.1093/jas/skab373.
  13. Apley, M.D. (2015). Treatment of Calves with Bovine Respiratory Disease: Duration of Therapy and Posttreatment Intervals. Vet Clin North Am Food Anim Pract. 31 (3), pp. 441–453. DOI: 10.1016/j. cvfa.2015.06.001.
  14. Mahmoud, A.E., Fathy, A., Ahmed, E.A., Ali, A.O., Abdelaal, A.M., El–Maghraby, M.M. (2022). Ultrasonographic diagnosis of clinical and subclinical bovine respiratory disease in Holstein calves. Vet World. 15 (8), pp. 1932–1942. DOI: 10.14202/vetworld.2022.1932–1942.
  15. Knauer, W.A., Godden, S.M., Dietrich, A., James, R.E. (2017). The association between daily average feeding behaviors and morbidity in automatically fed group–housed preweaned dairy calves. J Dairy Sci., 100 (7), pp. 5642–5652. DOI:10.3168/jds.2016–12372.
  16. Hixson, C.L., Krawczel, P.D., Caldwell, J.M., Miller–Cushon, E.K. (2018). Behavioral changes in group–housed dairy calves infected with Mannheimia haemolytica. J Dairy Sci., 101 (11). pp. 10351–10360. DOI:10.3168/jds.2018–14832.
  17. Theurer, M.E., Anderson, D.E., White, B.J., Miesner, M.D., Mosier, D.A., Coetzee, J.F., Lakritz, J., Amrine, D.E. (2013). Effect of Mannheimia haemolytica pneumonia on behavior and physiologic responses of calves during high ambient environmental temperatures. J Anim Sci., 91 (8), pp. 3917–3929. DOI:10.2527/ jas.2012–5823.
  18. White, B.J., Anderson, D.E., Renter, D.G., Larson, R.L., Mosier, D.A., Kelly, L.L., Theurer, M.E., Robért, B.D., Walz, M.L. (2012). Clinical, behavioral, and pulmonary changes in calves following inoculation with Mycoplasma bovis. Am J Vet Res., 73 (4), pp. 490–497. DOI:10.2460/ajvr.73.4.490.
  19. Cramer, C., Proudfoot, K., Ollivett, T. (2020). Automated Feeding Behaviors Associated with Subclinical Respiratory Disease in Preweaned Dairy Calves. Animals (Basel). 10 (6), 988 p. DOI:10.3390/ ani10060988.
  20. Cramer, M.C., Proudfoot, K.L., Ollivett, T.L. (2019). Short communication: Behavioral attitude scores associated with bovine respiratory disease identified using calf lung ultrasound and clinical respiratory scoring. J Dairy Sci., 102 (7), pp. 6540–6544. DOI:10.3168/jds.2018–15550.
  21. Buczinski, S., Fecteau, G., Dubuc, J., Francoz, D. (2018). Validation of a clinical scoring system for bovine respiratory disease complex diagnosis in preweaned dairy calves using a Bayesian framework. Prev Vet Med. 156, pp. 102–112. DOI:10.1016/j.prevetmed.2018.05.004.
  22. Tomazi, A.C.H., Tomazi, T., Bringhenti, L., Vinhal, A.P.A., Rodrigues, M.X., Bilby, T.R., Huson, H.J., Bicalho, R.C. (2023). Treatment with 2 commercial antibiotics reduced clinical and systemic signs of pneumonia and the abundance of pathogenic bacteria in the upper respiratory tract of preweaning dairy calves. J Dairy Sci., 106 (4), pp. 2750–2771. DOI:10.3168/jds.2022–22451.
  23. Berman, J., Francoz, D., Dubuc, J., Buczinski, S. (2017). A randomised clinical trial of a metaphylactic treatment with tildipirosin for bovine respiratory disease in veal calves. BMC Vet Res. 13 (1), 176 p. DOI:10.1186/s12917–017–1097–1.
  24. Cai, Y., Gilbert, M.S., Gerrits, W.J.J., Folkerts, G., Braber, S. (2021). Anti–Inflammatory Properties of Fructo–Oligosaccharides in a Calf Lung Infection Model and in Mannheimia haemolytica –Infected Airway Epithelial Cells. Nutrients. 13 (10), 3514 p. DOI:10.3390/nu13103514.
  25. Cutone, A., Lepanto, M.S., Rosa, L., Scotti, M.J., Rossi, A., Ranucci, S., De Fino, I., Bragonzi, A., Valenti, P., Musci, G., Berlutti, F. (2019). Aerosolized Bovine Lactoferrin Counteracts Infection, Inflammation and Iron Dysbalance in A Cystic Fibrosis Mouse Model of Pseudomonas aeruginosa Chronic Lung Infection. Int J Mol Sci., 20 (9), 2128 p. DOI:10.3390/ ijms20092128.
  26. Carvallo Chaigneau, F.R., Walsh, P., Lebedev, M., Mutua, V., McEligot ,H., Bang, H., Gershwin, L.J. (2021). A randomized controlled trial comparing non– steroidal anti–inflammatory and fusion protein inhibitors singly and in combination on the histopathology of bovine respiratory syncytial virus infection. PLoS One. 16 (6). DOI:10.1371/journal.pone.0252455.
  27. Eberhart, N.L., Storer, J.M., Caldwell, M., Saxton, A.M., Krawczel, P.D. (2017). Behavioral and physiologic changes in Holstein steers experimentally infected with Mannheimia haemolytica. Am J Vet Res., 78 (9), pp. 1056–1064. DOI: 10.2460/ajvr.78.9.1056.
  28. Wottlin, L.R., Carstens, G.E., Kayser, W.C., Pinchak, W.E., Thomson, J.M., Copié, V., O'Shea– Stone, G.P. (2021). Differential haptoglobin responsiveness to a Mannheimia haemolytica challenge altered immunologic, physiologic, and behavior responses in beef steers. J Anim Sci., 99 (1). DOI: 10.1093/jas/skaa404.
  29. Cramer, C., Ollivett, T.L. (2020). Behavior assessment and applications for BRD diagnosis: preweaned dairy calves. Anim Health Res Rev. 21 (2), pp. 188–191. DOI:10.1017/S1466252320000213.
  30. Dudek, K., Bednarek, D., Ayling, R.D., Kycko, A., Reichert, M. (2019). Preliminary study on the effects of enrofloxacin, flunixin meglumine and pegbovigrastim on Mycoplasma bovis pneumonia. BMC Vet Res. 15 (1), 371 p. DOI: 10.1186/s12917–019–2122–3.
  31. Mahendran, S.A., Booth, R., Bell, N.J., Burge, M. (2017). Randomised positive control trial of NSAID and antimicrobial treatment for calf fever caused by pneumonia. Vet Rec. 181 (2), 45 p. DOI:10.1136/vr.104057.
  32. Rizk, M.A., Mahmoud, M.E., El–Sayed, S.A.E., Salman, D. (2017). Comparative therapeutic effect of steroidal and non–steroidal anti–inflammatory drugs on pro–inflammatory cytokine production in water buffalo calves (Bubalus bubalis) naturally infected with bronchopneumonia: a randomized clinical trial. Trop Anim Health Prod. 49 (8), pp. 1723–1731. DOI:10.1007/ s11250–017–1383–8.
  33. Van de Weerdt, M.L., Coghe, J., Uystepruyst, C., Deby–Dupont, G., Lekeux, P. (1999). Ketoprofen and phenylbutazone attenuation of PAF–induced lung inflammation in calves. Vet J., 157 (1), pp. 39–49. DOI:10.1053/tvjl.1998.8027.
  34. Cai, Y., Gilbert, M.S., Gerrits, W.J.J., Folkerts, G., Braber, S. (2021). Anti–Inflammatory Properties of Fructo–Oligosaccharides in a Calf Lung Infection Model and in <i>Mannheimia haemolytica</ i>–Infected Airway Epithelial Cells. Nutrients. 13 (10), 3514 p. DOI:10.3390/nu13103514.
  35. Cai, Y., Gilbert, M.S., Gerrits, W.J.J., Folkerts, G., Braber, S. (2022). Galacto–oligosaccharides alleviate lung inflammation by inhibiting NLRP3 inflammasome activation in vivo and in vitro. J Adv Res., 39, pp. 305–318. DOI:10. 1016/j.jare.2021.10.013.
  36. Carvallo Chaigneau, F.R., Walsh, P., Lebedev, M., Mutua, V., McEligot, H., Bang, H., Gershwin, L.J. (2021). A randomized controlled trial comparing non–steroidal anti–inflammatory and fusion protein inhibitors singly and in combination on the histopathology of bovine respiratory syncytial virus infection. PLoS One. 16 (6):e0252455. DOI: 10.1371/journal. pone.0252455.
  37. Murphy, M.T., Qin, X., Kaul, S., Barrientos, G., Zou, Z., Mathias, C.B., Thomas, D., Bose, D.D. (2020). The polyphenol ellagic acid exerts anti–inflammatory actions via disruption of store–operated calcium entry (SOCE) pathway activators and coupling mediators. Eur J Pharmacol., 875:173036. DOI:10.1016/ j.ejphar.2020.173036. Epub 2020 Feb 23.
  38. Savio, M., Ibrahim, M.F., Scarlata, C., Orgiu, M., Accardo, G., Sardar, A.S., Moccia, F., Stivala, L.A., Brusotti, G. (2019). Anti–Inflammatory Properties of <i>Bellevalia saviczii</i> Root Extract and Its Isolated Homoisoflavonoid (<i>Dracol</i>) Are Mediated by Modification on Calcium Signaling. Molecules. 24 (18), 3376 p. DOI:10.3390/molecules24183376.
  39. Scorei, R.I., Rotaru, P. (2011). Calcium fructoborate–potential anti–inflammatory agent. Biol Trace Elem Res. 143 (3), pp. 1223–1238. DOI:10.1007/ s12011–011–8972–6.
  40. An, H.J., Lee, J.Y., Park, W. (2022). Baicalin Modulates Inflammatory Response of Macrophages Activated by LPS via Calcium–CHOP Pathway. Cells. 11(19), 3076 p. DOI:10.3390/cells11193076.
  41. Jung, S.Y., Hwang, H., Jo, H.S., Choi, S., Kim, H.J., Kim, S.E., Park, K. (2021). Tannylated Calcium Carbonate Materials with Antacid, Anti–Inflammatory, and Antioxidant Effects. Int J Mol Sci., 22 (9), 4614 p. DOI:10.3390/ijms22094614.
  42. Madhumathi, K., Rubaiya, Y., Doble, M., Venkateswari, R., Sampath Kumar, T.S. (2018). Antibacterial, anti–inflammatory, and bone–regenerative dual– drug–loaded calcium phosphate nanocarriers–in vitro and in vivo studies. Drug Deliv Transl Res. 8 (5), pp. 1066–1077. DOI:10.1007/s13346–018–0532–6.
  43. El–Boshy, M., Refaat, B., Almaimani, R.A., Abdelghany, A.H., Ahmad, J., Idris, S., Almasmoum, H., Mahbub, A.A., Ghaith, M.M., BaSalamah, M.A. (2020). Vitamin D<sub>3</sub> and calcium cosupplementation alleviates cadmium hepatotoxicity in the rat: Enhanced antioxidative and anti–inflammatory actions by remodeling cellular calcium pathways. J Biochem Mol Toxicol., 34 (3). DOI:10. 1002/jbt.22440.
  44. Sohn, K.C., Kang, S.J., Kim, J.W., Kim, K.Y., Ku, S.K., Lee, Y.J. (2013). Effects of Calcium Gluconate, a Water Soluble Calcium Salt on the Collagen– Induced DBA/1J Mice Rheumatoid Arthritis. Biomol Ther (Seoul). 21 (4), pp. 290–298. DOI:10.4062/biomolther.2013.040.
  45. Liu, L., Xu, D., Liu, P., Liu, F., Dai, L., Yan, H., Wen, F. (2018). Effects of calcium gluconate on lipopolysaccharide–induced acute lung injury in mice. Biochem Biophys Res Commun. 503 (4), pp. 2931–2935. DOI:10.1016/j.bbrc.2018.08.072.
  46. He, Y., Li, K., Yang, X., Leng, J., Xu, K., Yuan, Z., Lin, C., Tao, B., Li, X., Hu, J., Dai, L., Becker, R., Huang, T.J., Cai, K. (2021). Calcium Peroxide Nanoparticles–Embedded Coatings on Anti–Inflammatory TiO<sub>2</sub> Nanotubes for Bacteria Elimination and Inflammatory Environment Amelioration. Small. 17 (47):e2102907. DOI: 10.1002/smll.202102907.
  47. Ku, S.K., Cho, H.R., Sung, Y.S., Kang, S.J., Lee, Y.J. (2011). Effects of calcium gluconate on experimental periodontitis and alveolar bone loss in rats. Basic Clin Pharmacol Toxicol. 108 (4), pp. 241–250. DOI:10.1111/j.1742–7843.2010. 00646.x.
  48. Park, S.I., Kang, S.J., Han, C.H., Kim, J.W., Song, C.H., Lee, S.N., Ku, S.K., Lee, Y.J. (2016). The Effects of Topical Application of Polycal (a 2:98 (g/g) Mixture of Polycan and Calcium Gluconate) on Experimental Periodontitis and Alveolar Bone Loss in Rats. Molecules. 21 (4), 527 p. DOI:10.3390/molecules 21040527.
  49. Katoh, N., Miyamoto, T., Nakagawa, H., Watanabe, A. (1999). Detection of annexin I and IV and haptoglobin in bronchoalveolar lavage fluid from calves experimentally inoculated with Pasteurella haemolytica. Am J Vet Res., 60 (11), pp. 1390–1395.
  50. Senthilkumaran, C., Clark, M.E., Abdelaziz, K., Bateman, K.G., MacKay, A., Hewson, J., Caswell, J.L. (2013). Increased annexin A1 and A2 levels in bronchoalveolar lavage fluid are associated with resistance to respiratory disease in beef calves. Vet Res. 44 (1), 24 p. DOI:10.1186/1297–9716–44–24.
  51. Senthilkumaran, C., Hewson, J., Ollivett, T.L., Bienzle, D., Lillie, B.N., Clark, M., Caswell, J.L. (2015). Localization of annexins A1 and A2 in the respiratory tract of healthy calves and those experimentally infected with Mannheimia haemolytica. Vet Res. 46, 6 p. DOI:10.1186/s13567–014–0134–3.
  52. Planski, B., Abrashev, N. (2017). Dinamika na niakoi strani ot mineralniia metabolizŭm pri sukhostoĭni kravi, rodilki i teleta [Dynamic aspects of mineral metabolism in dry cows, puerperants and calves]. Vet Med Nauki. 24 (10), pp. 48–57. Bulgarian. (in Ukrainian)
AttachmentSize
PDF icon yemelyanenko_2_2023.pdf486.22 KB