You are here

Influence of nanocrystalline cerium dioxide on antigens of non-specific protection of quails

Intensive poultry farming technologies are closely linked to a variety of environmental, technological, feed and biological stressors, which tend to negatively affect their productivity and immune defenses. In the pathogenesis of such detrimental effects, the leading role belongs to the overproduction of oxygen free radicals - oxidative stress. The latter activates a number of transcription factors, including Nrf-2 and Nf-kB, which modulate the antioxidant defense network and participate in the organization of infection control. NDC is able to reduce the activation of Nf-kB and thus maintain antioxidant balance, but the response of the immune system to this factor is insufficiently studied. The aim of our work is to investigate the effect of NDC on the antigen of non-specific immunity of quails by adding it to drinking water. The object of study were the quail of the Pharaoh breed, experimental and control groups formed at the age of one day on the principle of analogues. The birds were kept in cages with free access to food and water. Quails of the experimental group in drinking water was added to the feed additive Nanocerium at a dose of 8.6 mg per liter of drinking water. This additive is an aqueous dispersion of NDC with an average nanoparticle size of 2-7 nm. The average weight of quails at the end of the experiment (56 days) in the experimental group was 20.2 g greater than in the control. Morphometric studies of the thymus, bursa and spleen showed no effect of NDC on the central and peripheral immune systems. Morphological parameters of the blood were within the physiological norm, but in the experimental group the number of erythrocytes and hemoglobin content were higher. The leukocyte count showed an increase in the leukocyte count (according to Garkavi LH) in the experimental group. Humoral performance was identical in both groups. Studies of cellular defense indicate no effect on the phagocytic function of peripheralblood cells. Functional and metabolic activity under the influence of NDC in the spontaneous test probably did not differ and increased in the stimulated. Therefore, quails that received nanocerium feed additive with water had a higher immunoresistance.

Key words: birds, nanocerium, morphometry, thymus, natural immunity, morphological parameters of blood, hematopoiesis, humoral immunity, cellular immunity, hematological parameters.

Accepted abbreviations: NDC – nanocrystalline cerium dioxide, ROS – reactive oxygen species, Nf-kB – nuclear factor - kV, Nrf-2 – nuclear factor - erythroid 2 and related factor 2.


  1. Surai, P.F., Kochish, I.I., Fisinin, V.I., Kidd, M.T. (2019). Antioxidant defence systems and oxidative stress in poultry biology: an update. Antioxidants. no. 8, 235 p. DOI:10.3390/antiox8070235
  2. Tu, W., Wang, H., Li, S. (2019). The antiinflammatory and anti-oxidant mechanisms of the keap1/nrf2/are signaling pathway in chronic diseases. Aging Dis. no. 3, pp. 637–651. DOI:10.14336/ AD.2018.0513
  3. Grigorieva, M.A., Velichko, O.A., Shabaldin, S.V. (2017). Vitagene regulation as a new strategy to fight stresses in poultry production. Agricultural biology. no. 4, pp. 716–730. DOI:10.15389/agrobiology..4.716eng
  4. Surai, P.F., Kochish, I.I., Kidd, M.T. (2021). Redox Homeostasis in Poultry: Regulatory Roles of NF- κB. Antioxidants (Basel). no. 10, 186 p. DOI:10.3390/ antiox10020186
  5. Wardyn, J.D., Ponsford, A.H., Sanderson, C.M. (2015). Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem Soc Trans. no. 43 (4), pp. 621–626. DOI:10.1042/BST20150014
  6. Corino, C., Rossi, R. (2021). Antioxidants in Animal Nutrition. Antioxidants. no. 10(12), pp. 1–4. DOI:10.3390/antiox10121877
  7. Cehmistrenko, O.S. (2019). Vykorystannja nanochastynok metaliv ta nemetaliv u ptahivnyctvi [The use of nanoparticles of metals and nonmetals in poultry]. Tehnologija vyrobnyctva i pererobky produkcii tvarynnyctva [Technology of production and processing of livestock products]. no. 2, pp. 113–130. DOI:10.33245/2310-9289- 2019-150-2-113-130
  8. Bityutskyy, V. S. (2017). Perspectives of cerium nanoparticles use in agriculture. The animal biology. no. 19, pp. 9–17. DOI:10.15407/animbiol19.03.009
  9. Xu, C., Qu, X. (2014). Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Materials. no. 6, pp. 1–16. DOI:10.1038/am.2013.88
  10. Selvaraj, V., Nepal, N., Rogers, S. (2015). Inhibition of MAP kinase/NF-kB mediated signaling and attenuation of lipopolysaccharide induced severe sepsis by cerium oxide nanoparticles. Biomaterials. no. 59, pp. 160–171. DOI:10.1016/j.biomaterials.2015.04.025
  11. Niu, J., Wang, K., Kolattukudy, P.E. (2011). Cerium Oxide Nanoparticles Inhibits Oxidative Stress and Nuclear Factor-κB Activation in H9c2 Cardiomyocytes Exposed to Cigarette Smoke Extract. The Journal of Pharmacology and Experimental Therapeutics. no. 338(1), pp. 53–61. DOI:10.1124/ jpet.111.179978
  12. Danchuk, V.V., Nishchemenko, M.P. (2013). Dovidnyk zahalnykh i spetsialnykh metodiv doslidzhen krovi s.-h. ptytsi [Handbook of general and special methods of blood research in the village of birds]. Lviv, 248 p. (in Ukraine).
  13. Vlizlo, V. V., Fedoruk, R. S., Ratych, I. B. (2012). Laboratorni metody doslidzhen' u biologii', tvarynnyctvi ta veterynarnij medycyni [Laboratory research methods in biology, animal husbandry and veterinary medicine]. Lviv: SPOLOM, 764 p. (in Ukraine).
  14. Antomonov M.Ju. (2006). Matematycheskaja obrabotka y analyz medyko-byologycheskyh dannyh [Mathematical processing and analysis of medical and biological data]. K.: FMD, 558 p. (in Russian).
  15. Zocenko, V. M., Bitjuсkyj, V. S., Ostrovskyj, D. M., Andrijchuk, A. V. (2021). M’jasna produktyvnist' perepeliv za vypojuvannja nanokrystalichnogo dioksydu ceriju [Meat productivity of quail after drinking nanocrystalline cerium dioxide]. Tehnologija vyrobnyctva i pererobky produkcii' tvarynnyctva: zbirnyk naukovyh prac' [Technology of production and processing of animal husbandry products: a collection of scientific papers]. no. 1 (164), pp. 57–64. DOI:10.33245/ 2310-9289-2021-164-1-57-64
  16. Garkavy, L.H., Kvakyna, E.B., Kuzmenko, T.S. (2015). Antystressornye reakcyy y aktyvacyonnaja terapyja [Anti-stress reactions and activation therapy]. M.: Book on Demand, 559 p. (in Russian).
  17. He, M.L., Wang, Y.Z., Xu, Z.R., Chen, M.L., Rambeck, W.A. (2003). Effect of dietary rare earth elements on growth performance and blood parameters of rats. J Anim Physiol Anim Nutr (Berl). Vol. 87(5–6), pp. 229–35. DOI:10.1046/j.1439-0396.2003.00432.x. PMID: 12752829.
  18. Stojanovskyj, V.G., Garmata, L.S., Kolomije, I.A. (2016). Funkcionuvannja imunnoi' systemy perepeliv v rizni periody postnatal'nogo ontogenezu [Functioning of the quail immune system in different periods of postnatal ontogenesis]. Naukovyj visnyk LNUVMBT imeni S.Z. G'zhyc'kogo [Scientific Bulletin of Lviv National University of Veterinary Medicine and Biotechnology named after S.Z. Gzhytskogo]. no. 3, pp. 36–39. DOI:10.15421/nvlvet7009
  19. Adua, O., Akinmuyisitana, I., Gbore, F.A. (2015). Growth performance and blood profile of female rabbits fed dietary Cerium Oxide. Journal of Bio-science. Vol. 21, pp. 69–75. DOI:10.3329/JBS. V21I0.22521
  20. Cai, L., Nyachoti, C.M., Kim, I.H. (2018). Impact of rare earth element-enriched yeast on growth performance, nutrient digestibility, blood profile, and fecal microflora in finishing pigs. Canadian Journal of Animal Science. Vol. 98(2), pp. 347–353. DOI:10.1139/ cjas-2017-0089
  21. Soloshenko, E. M., Kondakova, G. K., Shapovalova, O. V. (2019). Shhodo mozhlyvoi' uchasti erytrocytiv u rozvytku imunnyh reakcij [What is the possible role of erythrocytes in the development of immune reactions]. Dermatologija ta venerologija [Dermatology and venereology]. no. 3, pp. 8–12. DOI:10.33743/2308-1066-2019-3-8-12
  22. Shin, S., Yoo, J.S., Lee, J., Jang, H.D., Kim, H., Huang, Y., Chen, Y.J., Cho, J.H., Kim, I.H. (2008). Effects of Rare Earth Supplementation on Growth Performance, Blood Immune-Related Cell Population, Meat Quality and Fecal Odor Emission Gases in Finishing Pigs. Journal of Animal Science and Technology. Vol. 50, pp. 485–498. DOI:10.5187/JAST.2008.50.4.485
  23. Kerstin, R. (2006). Rare Earth Elements in Agriculture with Emphasis on Animal Husbandry. Dissertation, LMU München: Faculty of Veterinary Medicine. DOI:10.5282/edoc.5936
  24. Lord, M.S., Berret, J.F., Singh, S., Vinu, A., Karakoti, A.S. (2021). Redox Active Cerium Oxide Nanoparticles. Current Status and Burning Issues. Small. Vol. 17(51):e2102342. DOI:10.1002/ smll.202102342
  25. Serebrovska, Z., Swanson, R.J., Portnichenko, V. (2017). Anti-inflammatory and antioxidant effect of cerium dioxide nanoparticles immobilized on the surface of silica nanoparticles in rat experimental pneumonia. Biomed Pharmacother. Vol. 92, pp. 69–77. DOI:10.1016/j.biopha.2017.05.064
  26. Pro zakhyst tvaryn vid zhorstokoho povodzhennia: Zakon Ukrainy vid 28.03.2006 r [On the protection of animals from cruel treatment: the Law of Ukraine dated March 28, 2006.]. Available ua/laws/show/3447-15#Text
  27. Yevropeiska konventsiia pro zakhyst domashnikh tvaryn» vid 13.11.1987 r., shcho ratyfikovano: Zakonom Ukrainy № 578-VII (578-18) vid 18.09.2013 [European Convention on the Protection of Domestic Animals" dated November 13, 1987, ratified by: Law of Ukraine No. 578-VII (578-18) dated September 18, 2013.]. Available show/994_a15#Text
  28. Bityutsky, V. S., Tsekhmistrenko, S. I., Tsekhmistrenko, О. S., Tymoshok, N. O., Spivak, M. Y. (2020). Regulation of redox processes in biological systems with the participation of the Keap1/Nrf2/ARE signaling pathway, biogenic selenium nanoparticles as Nrf2 activators. Regulatory Mechanisms in Biosystems. no. 11(4), pp. 483– 493. DOI:10.15421/022074
PDF icon zotsenko_1_2022.pdf417.8 KB