Ви є тут
ROLE OF FREE RADICALS IN OXIDATIVE STRESS – BASIC KNOWLEDGE FOR CLINICIAN
Oxygen free radicals are thought to be involved in pathogenesis of various diseases in humans and animals. Living organisms have diverse defense mechanisms, both enzymatic and non-enzymatic. The aim of this review is state-of the art description of the role of reactive oxygen species on oxidative stress development in living organism.
Oxidative stress is most simply defined as an imbalance between oxidants and antioxidants in which the oxidant activity exceeds the neutralizing capability of antioxidants, resulting in cellular injury and activation of pathologic pathways. Within this context, the oxidants of interest are collectively referred to as reactive oxygen species, which can be defined as oxygen-containing molecules that are more reactive than the triplet oxygen molecules present in air. The biologically relevant molecules meeting this criterion include the superoxide anion radical, perhydroxyl radical, hydroxyl radical, and hydrogen peroxide. The human and animal body is well equipped to deal with the production of these molecules with endogenous antioxidant scavenging systems, which include antioxidant enzymes as well as, nonenzymatic antioxidants. The field of oxidative stress research and evidence-based antioxidant therapy in human and animal medicine is still in the early stages of development. There is a great deal to be discovered about the importance and basic pathophysiology of oxidative stress in living organism. Even as oxidant injury is proven to be associated with numerous conditions, it still remains to be seen if it is a primary cause of pathologic change or a secondary effect of disease.
Key words: ROS, Oxidative stress, Free oxygen radical, Antioxidants.
1. Allsop P., Peters A.M., Arnot R.N., Stuttle A.W., Deenmamode M., Gwilliam M.E. (1992). Intrasplenic blood cell kinetics in man before and after brief maximal exercise. Clin Sci (Lond), 83: pp. 47-54.
2. Alvarez S., Boveris A. (2004). Mitochondrial nitric oxide metabolism in rat muscle during endotoxemia, Free Radic Biol Med, 9: pp. 1472-1478.
3. Babior B.M. (2000). Phagocytes and oxidative stress. Am J Med, 109: pp. 33-44.
4. Baldeck J.D. Marquis R.E. (2008). Targets for hydrogen-peroxide-induced damage to suspension and biofilm cells of Streptococcus mutans. Can J Microbiol, 10: pp. 868-875.
5. Barton H.M., LeRoy B.E. (2007). Serum bile acids concentrations in healthy and clinically ill neonatal foals. J Vet Intern Med, 21: pp. 508-513.
6. Basha M.P., Begum S., Mir B.A. (2013). Neuroprotective Actions of Clinoptilolite and Ethylenediaminetetraacetic Acid Against Lead-induced Toxicity in Mice Mus musculus, Toxicol Int, 3: pp. 201-207
7. Berner R.A., Vandenbrooks J.M., Ward P.D. (2007). Evolution. Oxygen and evolution, Science, 316: pp. 557-558.
8. Bhuiyan A.R., Srinivasan S.R., Chen W., Sultana A., Berenson G.S. (2008). Association of serum bilirubin with pulsatile arterial function in asymptomatic young adults: the Bogalusa Heart Study. Metabolism, 57: pp. 612-616.
9. Brot N., Weissbach H. (2000). Peptide methionine sulfoxide reductase: biochemistry and physiological role. Biopolymers, 55: pp. 288-296.
10. Byung P.Y. (1994). Cellular defenses against damage from reactive oxygen species. Physiol Rev, 74: pp. 139-162.
11. Cannio R., Fiorentino G., Morana A., Rossi M., Bartolucci S. (2000). Oxygen: friend or foe? Archaeal superoxide dismutases in the protection of intra- and extracellular oxidative stress. Front Biosci, 5: pp. 768-779.
12. Carter D.E. (1995). Oxidation-reduction reactions of metal ions. Environ Health Perspect, 103 (Suppl. 1): pp. 17-19.
13. Castrogiovanni P., Imbesi R. (2012). Oxidative stress and skeletal muscle in exercise. Ital J Anat Embryol, 2: pp. 107-117.
14. Ciocoiu M., Badescu M., Paduraru I. (2007). Protecting antioxidative effects of vitamins E and C in experimental physical stress. J Physiol Biochem, 3: pp. 187-194.
15. Escobar J.A., Rubio M.A., Lissi E.A. (1996). SOD and catalase inactivation by singlet oxygen and peroxyl radicals. Free Radic Biol Med, 20: pp. 285-290.
16. Faizal P., Satheeshan B., Milindkumar, Adarsh A.K., Shilpa R., Roshni P., Remya T., Augusti K.T. (2013). Antioxidant status and oxidative stress in the circulation of younger and elderly human subjects. Indian J Clin Biochem, 4: pp. 426-428.
17. Farci F.M., Didion S.P. (2004). Vascular protection: superoxide dismutase isoforms in the vessel wall. Arterioscler Thromb Vasc Biol, 24: pp. 1367-1373.
18. Farid N., Inbal D., Nakhoul N., Evgeny F., Miller-Lotan R., Levy A.P., Rabea A. (2013). Vitamin E and diabetic nephropathy in mice model and humans. World J Nephrol, 4: pp. 111-124.
19. Farrell H., Hayes J., Laffey J., Rowan N. (2011). Studies on the relationship between pulsed UV light irradiation and the simultaneous occurrence of molecular and cellular damage in clinically-relevant Candida albicans. J Microbiol Methods, 2: pp. 317-326.
20. Halliwell B. (1990). How to characterize a biological antioxidant. Free Radic Res Commun, 9: pp. 1-32.
21. Halliwell B., Gutteridge J.M.C. (1990). Role of free radicals and catalytic metal ions human disease: an overview. Methods Enzymol, 186: pp. 1-85.
22. Hathkocks J.N., Azzi A., Blumberg J., Bray T., Dickinson A., Frei B. (2005). Vitamins E and C are safe across a broad range of intakes. Am J Clin Nutr, 81: pp. 736-745.
23. Jacob R.A., Sotoudeh G. (2002). Vitamin C function and status in chronic disease. Nutr Clin Care, 5: pp. 66-74.
24. Johnson F., Giulivi C. (2005). Superoxide dismutases and their impact upon human health. Mol Aspects Med, 26: pp. 340-352.
25. Khazim K., Gorin Y., Cavaglieri R.C., Abboud H.E., Fanti P. (2013). The antioxidant silybin prevents high glucose-induced oxidative stress and podocyte injury in vitro and in vivo. Am J Physiol Renal Physiol, 5: pp. 691-700.
26. Ko T.P., Safo M.K., Musayev F.N., DiSalvo M.L., Wang C., Wu S.H. (2000). Structure of human erythrocyte catalase. Acta Crystallogr D Biol Crystallogr, 56: pp. 241-245.
27. Krinsky N.I. (1998). The antioxidant and biological properties of the carotenoids. Ann N Y Acad Sci, 854: pp. 443-447.
28. Laurent A., Perdu-Durand E., Alary J., Debrauwer L., Cravedi J.P. (2000). Metabolism of 4-hydroxynonenal, a cytotoxic product of lipid peroxidation, in rat precision-cut liver slices. Toxicol Lett, 114: pp. 203-214.
29. Lubos E., Loscalzo J., Handy D.E. (2007). Homocysteine and glutathione peroxidase-1. Antioxid Redox Signal, 9: pp. 1923-1940.
30. Mancuso C., Pani G., Calabrese V. (2006). Bilirubin: an endogenous scavenger of nitric oxide and reactive nitrogen species. Redox Rep, 11: pp. 207-213.
31. Mueller S., Riedel H.D., Stremmel W. (1997). Direct evidence for catalase as the predominant H2O2 – removing enzyme in human erythrocytes. Blood, 90: pp. 4973-4978.
32. Nassi N., Ponziani V., Becatti M., Galvan P., Donzelli G. (2009). Anti-oxidant enzymes and related elements in term and preterm newborns. Pediatr Int, 51: pp. 183-187.
33. Nozik-Grayck E., Suliman H.B., Piantadosi С.A. (2005). Extracellular superoxide dismutase. Int J Biochem Cell Biol, 37: pp. 2466-2471.
34. Owen J.B., Butterfield D.A. (2010). Measurement of oxidized/reduced glutathione ratio. Methods Mol Biol, 648: pp. 269-277.
35. Papp L.V., Holmgren A., Khanna K.K. (2007). From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal, 9: pp. 775-806.
36. Pawlak W., Kedziora J., Zolynski K., Kedziora-Kornatowska K., Blaszczyk J., Witkowski P. (1998). Free radicals generation by granulocytes from men during bed rest. J Gravit Physiol, 5: pp. 131-132.
37. Raven E.L., Lad L., Sharp K.H., Mewies M., Moody P.C. (2004). Defining substrate specificity and catalytic mechanism in ascorbate peroxidase. Biochem Soc Symp, 71: pp. 27-38.
38. Sautin Y.Y., Nakagawa T., Zharikov S., Johnson R.J. (2007). Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediatedoxidative/nitrosative stress. Am J Physiol Cell Physiol, 293: pp. 584-596.
39. Sies H. (1993). Strategies of antoxidant defence. Eur J Biochem, 215: pp. 213-219.
40. Sohal R.S., Duby A. (1994). Mitochondrial oxidative damage, hydrogen peroxide release and aging. Free Radic Biol Med, 16: pp. 621-626.
41. Stocker R. (2004). Antioxidant activities of bile pigments. Antioxid Redox Signal, 6: pp. 841-849.
42. Stocker R. (1993). Natural antioxidants and atherosclerosis. Asia Pac J Clin Nutr, 2 Suppl 1: pp.15-20.
43. Strazullo P., Puig J.G. (2007). Uric acid and oxidative stress: relative impact on cardiovascular risk? Nutr Metab Cardiovasc Dis, 17: pp. 409-414.
44. Surapaneni K.M., Venkataraman G. (2007). Status of lipid peroxidation, glutathione, ascorbic acid, vitamin E and antioxidant enzymes in patients with osteoarthritis. Indian J Med Sci, 61: pp. 9-14.
45. Suzuki H., Sugiyama Y. (1998). Excretion of GSSG and glutathione conjugates mediated by MRP1 and cMO-AT/MRP2. Semin Liver Dis, 18: pp. 359-376.
46. Traber M.G. (2006). How much vitamin E? ... Just enough! Am J Clin Nutr, 84: pp. 959-960.
47. Veloso C.A., Oliveira B.F., Mariani F.E., Fagundes-Neto F.S., Volpe C.M., Nogueira-Machado J.A., Chaves M.M. (2013). Vitamin complex (ascorbic acid, alpha-tocopherol and beta-carotene) induces micronucleus formation in PBMNC unrelated to ROS production. Redox Rep, 6: pp. 219-223.
48. Vershinin A. (1999). Biological functions of carotenoids - diversity and evolution. Biofactors, 10: pp. 99-104.
49. Viggiano A., Viggiano D., Viggiano A., De Luca B. (2003). Quantitative histochemical assay for superoxide dismutase in rat brain. J Histochem Cytochem, 7: pp. 865-871.
50. Waring W.S., Convery A., Mishra V., Shenkin A., Webb D.J., Maxwell S.R. (2003). Uric acid reduces exercise-induced oxidative stress in healthy adults. Clin Sci (Lond). 4: pp. 425-430
51. Yamaguchi M., Kashiwakura I. (2013). Role of reactive oxygen species in the radiation response of human hematopoietic stem/progenitor cells. PLoS One, 7: e70503.
52. Young I., Woodside J. (2001). Antioxidants in health and diseases. J Clin Pathol, 54: pp. 176–186.
Долучення | Розмір |
---|---|
nvvm_1_2017_p77-81_niedzwiedz.pdf | 583.32 КБ |